Simultaneous Localization and Mapping (SLAM)

Henrik I Christensen
Contextual Robotics Institute
UC San Diego
La Jolla, CA 92130
hichristensen@ucsd.edu

Terminology

Pose	X r	The robots position and orientation	
Path/Trajectory	$X=\{x_r\}_i$	The set of poses the robot has passed through	
Landmark/Feature	Z i	A landmarks in the environment used for navigation etc.	
Мар	$Z=\{z_i\}$	The set of all landmarks	
Measurements	fi	The estimates provided by sensors which are contaminated by noise	
Dead reckoning	di	Data from the dead reckoning sensors	
Estimate	$P(x,z,d,f,\Lambda)$	Estimate of the pose and map information	

2

Outline

- What is Localization, Mapping and SLAM?
- Management of process uncertainty
- Modeling the environment
- Example use of SLAM
- Summary and Future Challenges

The localization problem

5

Localization in robotics

- One of the most common problems in mobile robotics
- Prior Information
 - A model of the environment is available
 - A kinematic/dynamic model for the robot
 - A set of sensors to detect features in the environments
 - A strategy to associate features with the environmental model
- <u>Problem</u>: Estimation of the robot pose (position & orientation)

The mapping problem

7

Mapping in robotics

- Frequently used in surveying and in perception such as vision
- Prior Information
 - A set of sensors for feature generation
 - A kinematic/dynamic model of the robot
 - A model of uncertainty propagation
 - A data association strategy
 - Knowledge of the trajectory traversed by the robot
- <u>Problem</u>: Estimate the position of features in the environment

The SLAM problem

9

Simultaneous localization and mapping

- Simultaneous estimation of robot location and environmental map / features (SLAM)
- Prior information
 - Kinematic/dynamic model of robot
 - Sensors for feature detection incl model of uncertainty
 - A method for data association
- Problem: Estimate pose for robot and the position of map features while traversing an environment

Components to the puzzle

- A kinematic/dynamic model for the vehicle
- A strategy to manage uncertainty over time
- Sensors / features for modeling of environment
- A method for data association across

11

Outline

- What is Localization, Mapping and SLAM?
- Management of process uncertainty
- Modeling the environment
- Example use of SLAM
- Summary and Future Challenges

Modeling of uncertainty

- There are several ways to represent uncertainty.
- Close ties to representations and data association.
- Multiple associations => multiple hypotheses

Uncertainty Models

Uni-Modal

Multi-Hypotheses (Gaussian Mixture Model)

Grid Tessellation

Topological

Preliminaries on modelling

- Assume a state of $s_i = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix}$
- Using a state space model we can estimate the system evolution

$$s_{i+1} = \mathbf{F}s_i + \mathbf{G}d_i + v_i$$

$$\{f_{i+1}\} = \mathbf{H}s_{i+1} + w_{i+1}$$

15

Kalman Filter Model

- Under the assumption of good data association the Kalman provides an optimal LSQ solution to the problem
- The Kalman filter model is a two stage process
 - Prediction of the process evolution
 - Update of the prediction based on measured data

Kalman Prediction

• The prediction step

$$s_{i|i-1} = \mathbf{F} s_{i-1|i-1} + \mathbf{G} d_i$$

 $\Sigma_{i|i-1} = \mathbf{F} \Sigma_{i-1|i-1} \mathbf{F}^T + \mathbf{Q}_i$

• The term Σ is the estimate of innovation covariance, and Q is the system noise

17

Kalman Updating

From measurements the prediction can be corrected

$$s_{i|i} = s_{i|i-1} + \mathbf{K}_i (f_i - \mathbf{H} s_{i|i-1})$$

$$\mathbf{K}_i = \Sigma_{i|i-1} \mathbf{H}^T \mathbf{S}_i^{-1}$$

$$\mathbf{S}_i = \mathbf{H} \Sigma_{i|i-1} \mathbf{H}^T + \mathbf{R}_i$$

$$\Sigma_{i|i} = (\mathbf{I} - \mathbf{K}_i \mathbf{H}) \Sigma_{i|i-1}$$

• Ri is the measurement noise

Introduction of new features

- The new feature is added to the state vector
 - Strategy I: wait until stability established
 - Appropriate for high frequency sensors
 - Strategy 2: establish covariance with other features for initial estimate
 - Appropriate for low frequency sensors
- A simple example of localization

21

Kalman Example

 Here the robot pose has been predicted based on odometric information

Kalman Example

 From laser data line features are extracted using a least square fit

23

Kalman Example

 The extracted lines are matched the model using similarity in polar space

Kalman Example

 The predicted model (purple) and the measured data (green) are combined in the Kalman update step to refine the estimate (red) and the process can be repeated.

25

The Multi-Hypothesis Approach

- The Kalman filter assumes that the data association is trivial. In some cases associations are noisy.
- Each possible association => a hypothesis

Particle Filtering

- In general the probability distribution is not Gaussian or uni-modal
- Particle filters allow approximation of any distribution by sampling
- Idea/intuition:
 - Distribute a number of particles across the world representation, each particle is a hypothesis. The density of particles = the distribution
 - Update particles based on measurement data
 - Too unlikely hypotheses are eliminated
 - Likely hypotheses are "replicated" in local neighborhood
 - The process is repeated until the distributed stabilizes

27

Particle Filtering - Example

Topological Models

	Wall	Closed door	Open door	Open hallway	Foyer
Nothing detected	0.70	0.40	0.05	0.001	0.30
Closed door detected	0.30	0.60	0	0	0.05
Open door detected	0	0	0.90	0.10	0.15
Open hallway detected	0	0	0.001	0.90	0.50

Adopted from I. Nourbakhsh, "Dervish"

29

Outline

- What is Localization, Mapping and SLAM?
- Management of process uncertainty
- Modeling the environment
- Example use of SLAM
- Summary and Future Challenges

Representation of the environment

- A variety of models have been proposed
 - Grid-based tessellation of environment
 - Feature based models
 - Graphical models
 - Topological model of environment
 - Hybrid Models

31

Grid Based Models

Space $\mathcal{O}(D^2)$

Update $\mathcal{O}(R^2)$ (Local region)

Represent $p_{(x,y)}(occupied|F)$

Outline

- What is Localization, Mapping and SLAM?
- Management of process uncertainty
- Modeling the environment
- Example use of SLAM
- Summary and Future Challenges

37

Example Applications

- In-door application for coverage and mapping of an office environment
- Out-door application with a rugged robot for mapping of a small urban area

Indoor navigation

39

The Robot Systems

- Differential Drive Robot
 - Pioneer PeopleBot
- Video and Laser Sensors
 - SICK LMS 221
 - Web camera (VGA)
- Odometric Feedback
- A mixed environmental model

The Representational Framework

- Representation of environment using
 - Points (high curvature)
 - Line segments (hough transform)
 - Door-ways (pattern matching)
 - Lamps in ceiling (pattern matching)
 - Visual lines in ceiling (lamps, ...)
 - Estimation based on an EKF model with overlaid topological graph model

Results from a test run

Results from a test run

45

Results from a test run

Outdoor navigation

47

The Robot System AXIS WebCam or SONY XC777 3Com WLAN Stereo cameras 802.11b SICK LMS 291 Trimble 212DL laser scanner **DGPS** Crossbow DMU-6x (INS) Polaroid 6500 UltraSound Bumpers iRobot KVH-100 **ATRV** Compass Line based environmental model Evaluated using both a graphical and an EKF approach

Outline

- What is Localization, Mapping and SLAM?
- Management of process uncertainty
- Modeling the environment
- Example use of SLAM
- Summary and Future Challenges

51

Summary

- The underlying theoretical model for SLAM is by now well established
- Graphical models and ways to partition the estimation problem has eliminated or reduced computational challenges
- Mature models for vehicles and sensors are available
- An increasing number of applications with operation of vehicle over extended periods
- SLAM is by now a mature technology

Future challenges in SLAM

- SLAM for truly unstructured environment
- Extended use of vision for SLAM
- SLAM in noisy environments
- Active exploration of environments
- Integration with other sensor systems

53

The End!