

Graphical SLAM

Henrik I. Christensen

Contextual Robotics UC San Diego La Jolla, CA hichristensen@ucsd.edu

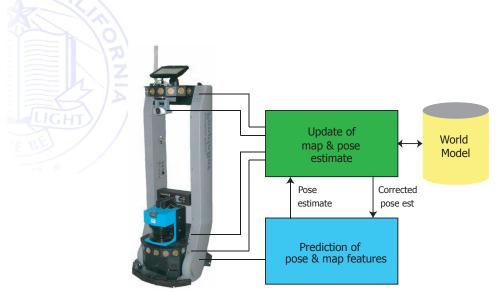
H. I. Christensen (UCSD CSE)

Graphical SLAM

1/50

- 1 Introduction
- 2 The Problem
- 3 Graph Model
- 4 Status?
- Graph reduction
- 6 Loop closing
- Example
- 8 Summary

Outline of problem



Ensure the robot does not get lost!

H. I. Christensen (UCSD CSE)

Graphical SLAM

3 / 50

The basics for SLAM

State of robot is modelled as the pose

$$\vec{x}_R = \begin{bmatrix} x & y & \theta \end{bmatrix}^T$$

• Map features can be represented as points or lines, i.e.:

$$\vec{x}_i = \begin{bmatrix} x_i & y_i \end{bmatrix}^T$$

Estimation as a Kalman Problem

- Prediction by odometric modelling
- Updating as a Kalman process, with the state

$$\vec{x}_{state} = \begin{bmatrix} \vec{x}_R \\ \vec{x}_1 \\ \vdots \\ \vec{x}_n \end{bmatrix}$$

H. I. Christensen (UCSD CSE)

Graphical SLAM

5 / 50

Why is SLAM difficult?

- The number of map hypotheses is very large
- ullet Often the signal to noise ratio for features is pprox 1
- Robust discriminative features are not common
- The "process" is often approximated

Problems?

- ORNIA
 - Flexible inclusion/exclusion of measurements?
 - 2 Handling of linearization?
 - Oealing with topological constraints?
 - Loop closing etc.

H. I. Christensen (UCSD CSE)

Graphical SLAM

7 / 50

Data handling

- Easy inclusion and/or exclusion of data at any time in the process.
- How to avoid too early a commitment to a particular map hypothesis.
- Design of a representation that allow any-time inclusion/exclusion of data?

Linearizations?

- Linearization might cause divergence in the data.
- Reported by several, e.g. ??
- Consistent handling of non-linearities
 - Start by exact handling of non-linearities
 - As data matures a linearization is permitted
 - Identification of major non-linearities to include them

H. I. Christensen (UCSD CSE)

Graphical SLAM

9 / 50

Topological constraints?

- Consistent inclusion of topological constraints
- Two step strategy:
 - Close approximation of system in a trivial way
 - 2 Fine tune full model by adding "smaller" corrections

Outline

- 1 Introduction
- 2 The Problem
- 3 Graph Model
- 4 Status?
- **5** Graph reduction
- 6 Loop closing
- Example
- 8 Summary

H. I. Christensen (UCSD CSE)

Graphical SLAM

11 / 50

Problem statement

- $\{x_i\}$ the robot path (set of poses), $(i \in \{1 ... N_p\})$
- ullet $\{z_j\}$ feature coordinates $(j\in\{1..N_m\})$
- $\bullet \{d_i\}$ dead reckoning measurements, between feature measurements
- $\{f_k\}$ feature measurements, $(k \in \{1..N_f\})$
- Λ the $f \leftrightarrow z$ association

$$P(x, z, d, f, \Lambda) = P(d, f|x, z, \Lambda)P(x, z, \Lambda)$$

Probabilistic model

$$P(x, z, d, f, \Lambda) \propto P(d, f|x, z, \Lambda)P(x, z, \Lambda)$$

$$P(d, f|x, z, \Lambda) \propto P(d|x)P(f|x, z, \Lambda)$$

$$P(x, z, \Lambda) \propto P(\lambda) = P(N_f) \propto e^{-\lambda N_f}$$

$$P(x, z, d, f, \Lambda) \propto P(d|x)P(f|x, z, \Lambda)e^{-\lambda N_f}$$

 $\mathsf{H.\ I.\ Christensen\ (UCSD\ CSE)}$

Graphical SLAM

13 / 50

An energy model

$$E(x, z, d, f, \Lambda) = -\log(P(d|x)) - \log(P(f|x, z, \Lambda)) + \lambda N_f$$

- Or $E(x, z, d, f, \Lambda) = E_d + E_f + E_{\Lambda}$
- Or: ...

An energy model

$$E(x, z, d, f, \Lambda) = E_d(x) + E_f(x, z) + E_{\Lambda}(n_i)$$
(1)

$$E_d = -\sum_{i=1}^{N_p} log(P(d_i|x_{i-1},x_i)) = \frac{1}{2} \sum_{i=1}^{N_p} \xi_i^T k_i \xi_i$$
 (2)

$$E_f = -\log(P(f|x, z, \Lambda)) = \frac{1}{2} \sum_{k=1}^{N_m} \eta_k^T k_k \eta_k$$
 (3)

$$E_{\Lambda} = -\sum_{j=1}^{N_f} \lambda(n_j - 1) \tag{4}$$

$$\xi_i = T(x_i|x_{i-1}) - d_i$$
 $\eta_k = h(T(z_j|x_i)) - f_k$

H. I. Christensen (UCSD CSE)

Graphical SLAM

15 / 50

- 1 Introduction
- 2 The Problem
- **3** Graph Model
- 4 Status?
- Graph reduction
- 6 Loop closing
- Example
- 8 Summary

Organizing a model

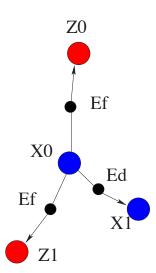
- Graph representation
- Two types of nodes:
 - State notes
 - Poses (x_i)
 - Features (z_j)
 - 2 Energy Nodes (Computation of Eqn (1))
 - Connected to the state nodes needed for computation
 - Movement (d_i, k_i)

H. I. Christensen (UCSD CSE)

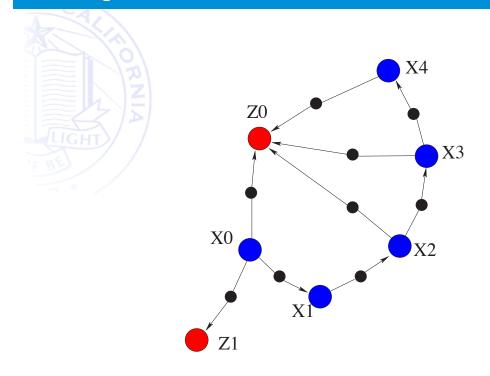
Graphical SLAM

17 / 50

Starting a model



Entering more data

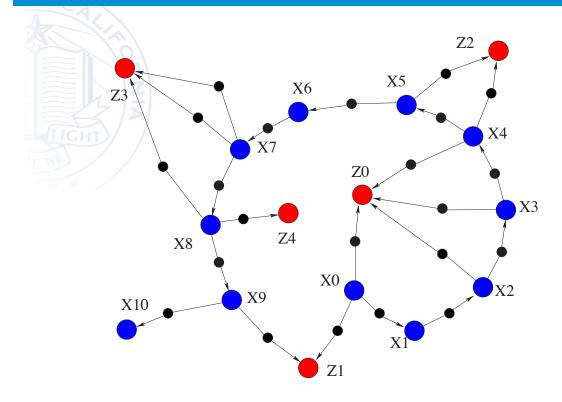


H. I. Christensen (UCSD CSE)

Graphical SLAM

19 / 50

A graphical model example



Map updating

- Optimal solution to Eq. (1): $(\operatorname{argmin} E)$ is not realistic.
- Relaxation techniques allow iterative updating
- In a time step:
 - Add a new state node (pose)
 - 2 Any new features/measurements?
 - Update the rest of the map minimize energy

H. I. Christensen (UCSD CSE)

Graphical SLAM

21 / 50

Map Update-Energy

• Eqn (1) Taylor expanded for a node A:

$$E_{A} = \sum_{i \in edge(A)} [E_{i}(\bar{x}_{A}, \bar{x}_{i}) + \nabla E_{i}(\bar{x}_{A}, \bar{x}_{i}) \begin{pmatrix} \Delta x_{A} \\ \Delta x_{i} \end{pmatrix}$$

$$+ \frac{1}{2} (\Delta x_{A} \Delta x_{i}) \nabla^{T} \nabla E_{i}(\bar{x}_{A}, \bar{x}_{i}) \begin{pmatrix} \Delta x_{A} \\ \Delta x_{i} \end{pmatrix}]$$

Notation:

$$\mathcal{G} = \nabla E_A = \begin{pmatrix} \mathcal{G}_A \\ \mathcal{G}_i \end{pmatrix}$$

$$\mathcal{H} = \nabla^T \nabla E_A = \begin{pmatrix} \mathcal{H}_{AA} & \mathcal{H}_{Ai} \\ \mathcal{H}_{Ai} & \mathcal{H}_i i \end{pmatrix}$$

Map Update-Energy (II)

Optimizing a node A:

$$(x_A - \bar{x}_A) = -\mathcal{H}_{AA}^{-1}\mathcal{G}_A \tag{5}$$

• With an energy change of

$$\Delta E_A = \frac{1}{2} \mathcal{G}_A^\mathsf{T} \mathcal{H}_{AA}^{-1} \mathcal{G}_A \tag{6}$$

H. I. Christensen (UCSD CSE)

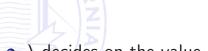
Graphical SLAM

23 / 50

Map Update-Energy (III)

- ΔE_A decides on update strategy:
 - Steepest decent close to saddle point
 - Use eqn. (5) direct
 - Chained update
 - Locate a node that is "good"
 - Update from that node

Feature Matching



- \bullet λ decides on the value of new measurements
 - Add a new feature
 - 2 Compute energy change
 - If change too large, remove association
- Similar to EM (?)
- Matching/graph updating anytime

H. I. Christensen (UCSD CSE)

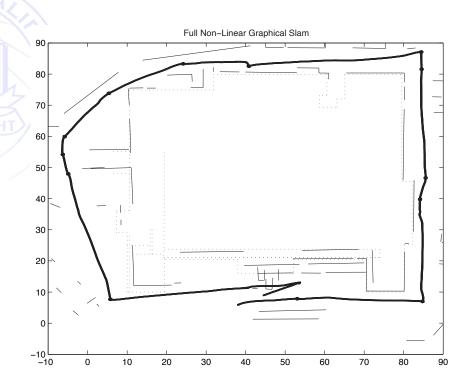
Graphical SLAM

25 / 50

Example

- Sick LMS 291 Laser scanner
- CrossBow DFOG INS package
- State $(\theta_n, x_n, y_n)^T$
- Lines w. end-points (x, y)
- See ? for details
- Operating around a house.
- 7500 Pose Nodes, 11975 line measurements
- Update time 30 ms (550 MHz Pentium)

SLAM example



H. I. Christensen (UCSD CSE)

Graphical SLAM

27 / 50

- 1 Introduction
- 2 The Problem
- 3 Graph Model
- 4 Status?
- Graph reduction
- 6 Loop closing
- Example
- 8 Summary

Status?

A framework to avoid linearization effects

- Loop closing:
 - Recognition of loop closure (place recognition)
 - 2 Updating map to include the topological constraint
- Doing 2) often has limited effect
- A proposal ...

H. I. Christensen (UCSD CSE)

Graphical SLAM

29 / 50

- 1 Introduction
- 2 The Problem
- 3 Graph Model
- 4 Status?
- 6 Graph reduction
- 6 Loop closing
- Example
- 8 Summary

Reducing the graph

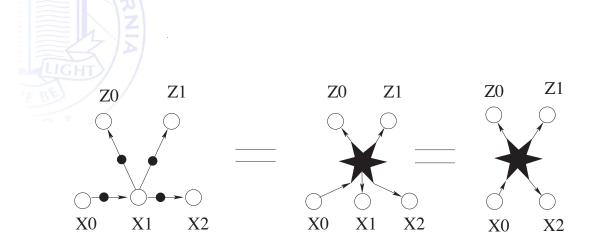
- How can state nodes be removed from the graph?
- In a linear system one could generate a closed form solution
- In a non-linear case an approximation can be used.
- Consider elimination of a node A given neighboring nodes B.
- Consider the energy from state A expanded.

H. I. Christensen (UCSD CSE)

Graphical SLAM

31 / 50

The basic idea



The Energy from A

$$E_{A} = \sum_{j \in edge(A)} [E_{i}(\bar{x}_{A}, \bar{x}_{j}) + \mathcal{G}_{j}(x_{j} - \bar{x}_{j}) + \frac{1}{2} (x_{A} - \bar{x}_{A} x_{j} - \bar{x}_{j}) \mathcal{H}_{j}(\bar{x}_{A}, \bar{x}_{j}) \begin{pmatrix} x_{A} - \bar{x}_{A} \\ x_{j} - \bar{x}_{j} \end{pmatrix}]$$
(7)

Transforming to B:

$$(x_A - \bar{x}_A) = -\mathcal{H}_{AA}^{-1}\mathcal{H}_{AB}(x_B - \bar{x}_B)$$

H. I. Christensen (UCSD CSE)

Graphical SLAM

33 / 50

Elimination of A

• Substitution into eqn (7) eliminates A

$$E^* = \sum_{j \in edge(A)} [E_j(\bar{x}_A, \bar{x}_j) + \mathcal{G}_j(x_j - \bar{x}_j)$$

$$+ \frac{1}{2} (x_j - \bar{x}_j)^T \mathcal{H}_{jj} (x_j - \bar{x}_j)$$

$$- \sum_{i \in edge(A)} (x_i - \bar{x}_i)^T \mathcal{H}_{iA} \mathcal{H}_{AA}^{-1} \mathcal{H}_{Aj} (x_j - \bar{x}_j)]$$

New term connects i and j (new connection)

Star nodes

- In principle the entire graph could be fused into a single node, as done in EKF.
- In practice star nodes are used to fuse local "maps"
- Typically upto 128 state nodes are considered for "fusion".
- The star nodes are considered retroactively after say 50 poses.

H. I. Christensen (UCSD CSE)

Graphical SLAM

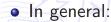
35 / 50

Making star nodes invariant

- ullet Star nodes updates energy using the Hessian ${\cal H}$
- ullet If measurements have symmetries (such as lines) ${\cal H}$ will have zero eigenvalues.
- Project state nodes to "natural coordinates" (q) in a lower dimensional space without symmetries.

$$q_i = PT(x_i|x_0)$$

Mapping to natural coordinates



$$\mathcal{H}_{xx} = J^{\mathsf{T}} \mathcal{H}_{qq} J + \frac{\partial^2 q}{\partial x \partial x} \mathcal{G}_q \approx J^{\mathsf{T}} \mathcal{H}_{qq} J$$

Thus:

$$\mathcal{H}_{qq} = ilde{J}\mathcal{H}_{xx} ilde{J}^{T}$$

• Using SVD it is possible to find eigenvalues b_j and eigenvectors V_j of the Hessian

H. I. Christensen (UCSD CSE)

Graphical SLAM

37 / 50

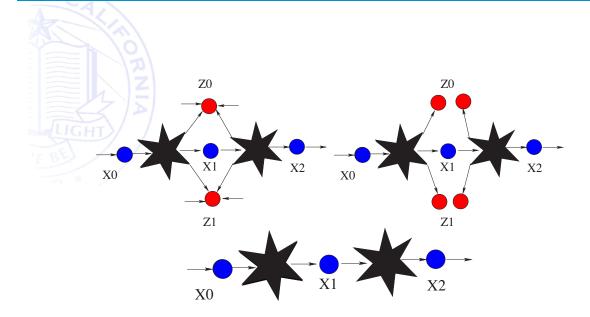
Energy & Properties

• Using the eigenvectors the energy at \bar{q} is now:

$$E^* = E^*(\bar{q}) + \frac{1}{2} \sum_j b_j (V_j \Delta q)^2$$

- Recentered nodes are linear in energy
- ullet A state node connected to only one star node can be eliminated $(\Delta q=0)$
- Star nodes like local maps in Atlas (?)

Optimizing global calculations



H. I. Christensen (UCSD CSE)

Graphical SLAM

39 / 50

- 1 Introduction
- 2 The Problem
- 3 Graph Model
- 4 Status?
- 6 Graph reduction
- 6 Loop closing
- Example
- 8 Summary

Closing loops

- With $\Delta q = 0$ the state nodes between star nodes is ignored.
- Define a cost function using Lagrange multipliers

$$C(\Lambda, \Delta q) = \Lambda(\sum_{i} \Delta x - d_c) + \frac{1}{2} \sum_{i} \sum_{j} b_{ji} (V_{ji} \Delta q)^2$$

- Where i is the star node index, Δx_i is the pose difference between the poses. d_c is the pose constraint.
- I.e.

$$\Delta x_i = \left(egin{array}{cc} \mathcal{R}_i & 0 \ 0 & 1 \end{array}
ight) \left(\Delta q_i + ar{q}_i
ight)$$

H. I. Christensen (UCSD CSE)

Graphical SLAM

41 / 50

Solving for closed loops

Linearisation gives:

$$\Delta q_i = -\sum_j rac{V_{ji}^{\mathcal{T}} V_{ji}}{b_j} \left(egin{array}{cc} \mathcal{R}_i & 0 \ 0 & 1 \end{array}
ight) \Lambda^{\mathcal{T}}$$

Where:

$$\Lambda^{T} = S^{-1} \left\{ \left[\sum_{i} \begin{pmatrix} \mathcal{R}_{i} & 0 \\ 0 & 1 \end{pmatrix} \bar{q}_{i} \right] - d_{c} \right\}$$

$$S = \sum_{i} \left\{ \begin{pmatrix} \mathcal{R}_{i} & 0 \\ 0 & 1 \end{pmatrix} \left[\sum_{j} \frac{V_{ji}^{T} V_{ji}}{b_{j}} \right] \begin{pmatrix} \mathcal{R}_{i} & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Outline

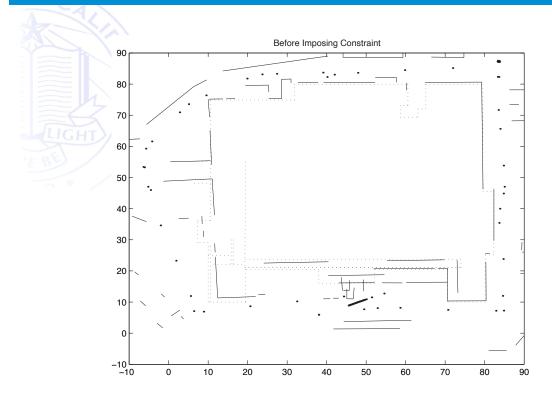
- 1 Introduction
- 2 The Problem
- 3 Graph Model
- 4 Status?
- **5** Graph reduction
- 6 Loop closing
- Example
- 8 Summary

H. I. Christensen (UCSD CSE)

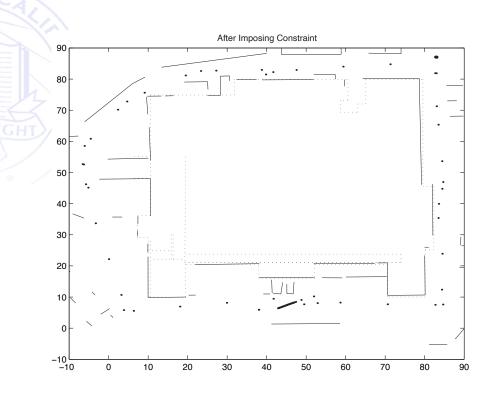
Graphical SLAM

43 / 50

Map example - no closing



Map example - closing

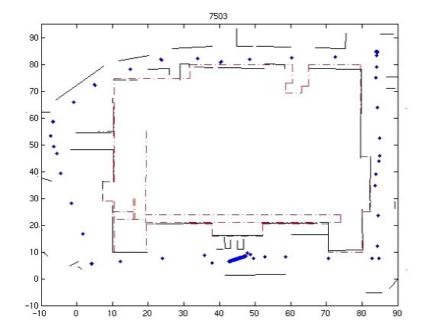


H. I. Christensen (UCSD CSE)

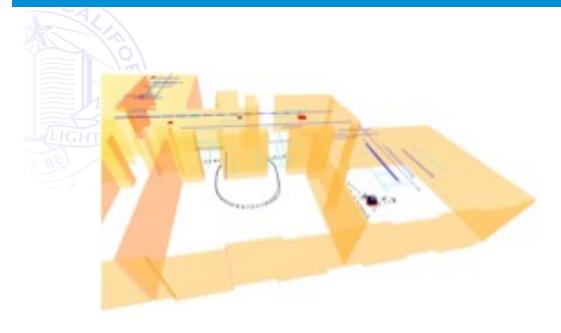
Graphical SLAM

45 / 50

Example Movie



Example Movie 2



H. I. Christensen (UCSD CSE)

Graphical SLAM

47 / 50

Closing loops

- Loop closing has a complexity of O(N+1) where N is the number of star nodes.
 - Once loop closing is achieved
 - Turn back on inter-star relation to fine tune
- Achieved in 1-2 seconds for large environments
- Constraints similar to "strong links" in ?.

Outline

- 1 Introduction
- 2 The Problem
- 3 Graph Model
- 4 Status?
- **5** Graph reduction
- 6 Loop closing
- Example
- 8 Summary

H. I. Christensen (UCSD CSE)

Graphical SLAM

49 / 50

Summary

- A new efficient representation for SLAM
 - Easy integration of data anytime
 - "Chunk-ing" data into local maps (star nodes)
 - Addition of constraint for loop closing
- Computationally efficient (10-12 ms / pose)
- Losing closing without linearization problems
- Further details in ????