

Outline

- Representation of position and orientation
 - Reference Frames
 - · Representation of position and orientation in 2D and 3D
 - Models for transformations between reference frames
 - Homogenous coordinates
- · Representations for time and motions
 - · Trajectory models
 - Time varying reference frames
- Summary

Source: Many Illustrations / basic material adopted from P. Corke, Robotics, Vision and Control, STAR Vol. 73, Springer Verlag, 2011

(c) Henrik I Christensen

Reference Frames

- Robotics is all about management of reference frames
- · Perception is about estimation of reference frames
- · Planning is how to move reference frames
- Control is the implementation of trajectories for reference frames
- The relation between references frames is essential to a successful system

Representation of position and orientation

- We will make reference to different frames such as A and B
- The transformation between frames will be denoted by the the symbol xi (ξ)
- If we have a point P then we will use AP to denote that P is represented in reference frame A
- + For transformations between reference frames we will use the notation ${}^{A}\!\xi_{B}$

Use of reference frames - example

Transformations

• We can compose transformation

 $\bullet \ \ \mathsf{A}\xi_C = \mathsf{A}\xi_B \oplus \ \mathsf{B}\xi_C$

• We can represent a point ${}^{\rm C}{\rm P}$ in the frame A through the transformation ${}^{\rm A}{\rm P}=({}^{\rm A}\xi_B\oplus {}^{\rm B}\xi_C)\,{}^{\rm C}{\rm P}$

Basics concepts:

- A point P is described by a vector that specify the <u>displacement</u> from the origin of the reference frame.
- A set of points that represent a rigid object can be described by a <u>single</u> coordinate frame, and its constituent points are described by <u>displacements</u> from that coordinate frame
- The <u>position</u> and <u>orientation</u> of an object's coordinate frame is referred to as its <u>pose</u>
- A <u>relative pose</u> describes the pose of one coordinate frame with respect to another and is denoted by an algebraic variable ξ
- A coordinate vector describing a point can be represented with respect to a different coordinate frame by applying the relative pose to the vector using the · operator
- We can perform <u>algebraic manipulation</u> of expressions written in terms of relative poses

• Columns of **vRb**: axes of B in V. In MATLAB notation: [c -s; s c]

• X_E = o x a

(c) Henrik I Christensen

- In 2D we will represent the pose of an object by (x, y, θ)
- To represent translations we can use simple vector addition

• $P_{new} = P_{old} + T$

• For rotations we can do simple operations

• $P_{new} = R P_{old}$

- To make operations manageable it is easier to use homogenous transformations
- · Representing the vector with an additional element

- Or without orientation
 - P = (x, y, 1)[⊤]
- We can consider also the 3 dimensional case

(c) Henrik I Christensen

Representing 3D Rotations

- Rotation Matrices (DCM)
- Euler Angles
 - Eulerian
 - Cardanian
 - Gimbal Lock
- Axis-Angle
- Unit Quaternions

3D Representation

Representing rotations

- There are two commonly used rotation representations
- Euler rotations are represented by rotations about axes
 - ZYZ, XYX, YXY, YZY, ZXZ
- Cardanian type rotations are about all three axes
 - XYZ, XZY, YZX, YXZ, ZXY, ZYX
- The Euler representation is widely used in Aerospace and Mechanical Dynamics. The most common model is ZYZ, i.e.

$\boldsymbol{R} = \boldsymbol{R}_{z}(\boldsymbol{\phi})\boldsymbol{R}_{y}(\boldsymbol{\theta})\boldsymbol{R}_{z}(\boldsymbol{\psi})$

- · Represented by the three angles of rotation.
- Another commonly used representation is pitch-roll-yaw

$\boldsymbol{R} = \boldsymbol{R}_x(\boldsymbol{\theta}_r)\boldsymbol{R}_y(\boldsymbol{\theta}_p)\boldsymbol{R}_z(\boldsymbol{\theta}_y)$

• Often seen in maritime applications. Typically x direction is forward, y is to the right and z is downward.

(c) Henrik I Christensen

Roll-Pitch-Yaw $\mathcal{R}_v^b(\phi,\theta,\psi) = \mathcal{R}_{v2}^b(\phi)\mathcal{R}_{v1}^{v2}(\theta)\mathcal{R}_v^{v1}(\psi)$ (2.4) $\left(\cos\theta \quad 0 \quad -\sin\theta\right)$ $\sin\psi 0$ 0 $\cos\psi$ $0 \cos \phi \sin \phi$ 0 1 0 $-\sin\psi \cos\psi 0$ $\sin\theta = 0 \cos\theta$ 0 $-\sin\phi \cos\phi$ 0 0 COCU (2.5) $S_{\phi}S_{\theta}C_{\psi} - C_{\phi}S_{\psi} - S_{\phi}S_{\theta}S_{\psi}$ $c_{\phi}s_{\theta}c_{\psi} + s_{\phi}s_{\psi} - c_{\phi}s_{\theta}s_{\psi} - s_{\phi}c_{\psi}$

Beard, 2011, Small Unmanned Aircraft (c) Henrik I Christensen

UNIT Quaternions • 2D: • 3D: • *θ* • $\theta_{\rm r}, \theta_{\rm p}, \theta_{\rm y}$ • [cθ -sθ; sθ cθ] • $z = (c\theta, s\theta)$ • [r11 r12 r13;r21 r22 r23;r31 r32 r33] • $q = c(\theta/2) < s(\theta/2) \mathbf{v} >$ For the case of quaternions our generalized pose is $\xi \sim \dot{q} \in \mathbb{Q}$ and $\dot{q}_1 \oplus \dot{q}_2 \mapsto s_1 s_2 - v_1 \cdot v_2$, $< s_1 v_2 + s_2 v_1 + v_1 \times v_2 >$ which is known as the quaternion or Hamilton product,* and $\ominus \dot{q} \mapsto \dot{q}^{-1} = s, \langle -v \rangle$ which is the quaternion conjugate. The zero pose $0 \mapsto 1 < 0, 0, 0$ which is the identity quaternion. A vector $v \in \mathbb{R}^3$ is rotated $\dot{q} \cdot v \mapsto \dot{q} \dot{q}(v) \dot{q}^{-1}$ where $\dot{q}(v) = 0$, $\langle v \rangle$ is known as a pure quaternion. (c) Henrik I Christensen

Representations of Pose - Overview

representation	\oplus	θ	rotn.	transl.	dim	MATLAB
$(x, y, \theta) \in \mathbb{R}^2 \times \mathbb{S}$			~	~	2D	
$T \in SE(2)$	$\boldsymbol{T}_1 \boldsymbol{T}_2$	T^{-1}	~	×	2D	se2(x, y)
$\mathbf{R} \in SO(2)$	$R_1 R_2$	RT	×	~	2D	se2(0, 0, th)
$T \in SE(2)$	$\boldsymbol{T}_1 \boldsymbol{T}_2$	T^{-1}	1	~	2D	se2(x, y, th)
$(x, y, z, \Gamma) \in \mathbb{R}^3 \times \mathbb{S}^3$			~	~	3D	
$R \in SO(3)$	R_1R_2	\mathbf{R}^T	×	~	3D	rotx, roty,
$\Gamma \in \mathbb{S}^3$	×			~	3D	tr2eul, eul2tr
$\Gamma \in \mathbb{S}^3$	×			~	3D	tr2rpyl, rpy2tr
$T \in SE(3)$	T_1T_2	T^{-1}	~	~	3D	transl(x,y,z)
$\mathring{q} \in \mathbb{Q}$	<i>q</i> ₁ <i>q</i> ₂	\mathring{q}^{-1}	×	~	3D	quaternion,

(c) Henrik I Christensen

- Robotics is often about movement from a position A to B ($P_A \rightarrow P_B)$
- · Typically we have additional constraints
 - Smooth trajectory
 - Time constraints
 - · Maximum speed
 - Acceleration
 - Jerk
- How can we formulate trajectories that satisfy these constraints?

(c) Henrik I Christensen

Paths (Locus) vs Traiectories (Locus + Time)

Smooth trajectories in 1-D

- For representation of trajectories we can use polynomials
- A typical example is a quintic polynomial
 - $S(t) = A t^5 + B t^4 + C t^3 + D t^2 + E t + F with t \in [0, T]$
- · It will have smooth first and second order derivatives
- An example of such models is the clothoid model for roads in Europe
- An alternative is use of linear segments with parabolic blend
 - · Smooth trajectories, with linear velocity variations
 - The motion has step changes in acceleration
 - Where do we see this type of trajectories?
- · Lets look at a couple of examples

Pure trapezoidal

Multiple dimensions, Multi-SEGMENT

Multi-segment trajectories

- Frequently the motion is not simply a motion from A to B, but a more complex motion to cover a set of trajectories.
- We can define a set of via points.
- We can "blend" at the via points to achieve acceleration around those areas, but closers to constant velocity elsewhere

Multi-dimensional case

- The single dimensional case generalizes directly to multiple dimensions / multiple axes.
- Most robot controllers will directly generate trajectories given a specification
 of given constraints
- Example:

Cartesian motion

- We could do the same in Cartesian space
- We can define points and do linear interpolation between them
- Animate1 step change
- Animate2 smooth motion

Examples of use of moving reference frames

- Most common example
 - Inertial Navigation System (INS)
 - Inertial Measurement Unit (IMU)
 - Estimation of ego-motion
 - Estimation of vehicle motion from GPS + INS/IMU
 - Estimation of end-effector motion
 - Estimation of motion of people (and gestures)

Inertial Navigation

- Measure angular velocity with gyroscope, acceleration with accelerometer
- · Integrate over time:

$$\boldsymbol{R}\langle \boldsymbol{k}+\boldsymbol{1}\rangle = \delta_t \boldsymbol{S}(\boldsymbol{\omega}) \boldsymbol{R}\langle \boldsymbol{k}\rangle + \boldsymbol{R}\langle \boldsymbol{k}\rangle$$

$${}^{0}\boldsymbol{a} = {}^{0}\boldsymbol{R}_{B}{}^{B}\boldsymbol{a}$$

Ring-laser Gyro

(c) Henrik I Christensen

Time-varying coordinate frames

- Handling rotation of coordinate frames is a little more complex
- We can write the derivative of the rotation matrix

$$\dot{R}(s) = S(\omega)R(t)$$

• Where

$$S(\omega) = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}$$

- · where omega describes the rotation around each axis
- We can do the transformation directly in homogenous coordinates, i.e.

 $T = \begin{bmatrix} S(\delta_{\theta}) & \delta_d \\ 0 & 0 \end{bmatrix} + I_{4x4}$

Summary

- A few foundational concepts on position, orientation, time and trajectories
- Many different models for representation
- · Position is relative easy
- · Rotation has a number of issues to consider
- · Using homogenous transformations often pays off
- We will use reference frames extensively.
- Robotics is about estimation, control and planning across references frames
- · Many more foundational concepts covered in the:
 - · Handbook of Robotics, B. Siciliano & O. Khatib, Springer Verlag, 2010
 - Robotics, Vision and Control, *P. Corke*, Springer Verlag, STAR Volume 73, Oct 2011 (incl. MATLAB toolbox)

(c) Henrik I Christensen