

Robotics
 Foundations

Henrik I Christensen

Outline

- Representation of position and orientation
- Reference Frames
- Representation of position and orientation in 2D and 3D
- Models for transformations between reference frames
- Homogenous coordinates
- Representations for time and motions
- Trajectory models
- Time varying reference frames
- Summary

Source: Many Illustrations / basic material adopted from P. Corke, Robotics, Vision and Control, STAR Vol. 73, Springer Verlag, 2011

Representation of position and orientation

- We will make reference to different frames such as A and B
- The transformation between frames will be denoted by the the symbol xi (ε)
- If we have a point P then we will use $A P$ to denote that P is represented in reference frame A
- For transformations between reference frames we will use the notation ${ }^{A} \xi_{B}$

Use of reference frames - example

- Easy to consider

Use of reference frames - example

Basics concepts:

- A point P is described by a vector that specify the displacement from the origin of the reference frame.
- A set of points that represent a rigid object can be described by a single coordinate frame, and its constituent points are described by displacements from that coordinate frame
- The position and orientation of an object's coordinate frame is referred to as its pose
- A relative pose describes the pose of one coordinate frame with respect to another and is denoted by an algebraic variable ξ
- A coordinate vector describing a point can be represented with respect to a different coordinate frame by applying the relative pose to the vector using the - operator
- We can perform algebraic manipulation of expressions written in terms of relative poses

Pose Algebra

Poses in 2D

- ($\mathrm{x}, \mathrm{y}, \mathrm{\theta}$) or (R, t)
- Better: SE(2), next slide

Rotations in 3D

- Rotation Matrices (DCM), $3 \times 3 \in \mathbf{S O}(3)$
- Columns of $\mathbf{a R}_{\mathrm{b}}$: axes of B in A . In MATLAB notation: [Xb Yb Zb]
- 9 numbers, but 3D Manifold

Two vector representations

- In some applications it is convenient to talk about direction and orientation.
- Can you think of any?

Representing end-effector Pose

- $Z_{E}=$ approach vector a
- $Y_{E}=$ orientation vector o
- $X_{E}=0 \times a$

Two vector representations

- In some applications it is convenient to talk about direction and orientation
- Grasping
- Docking

- We can define orientation (0) and direction (a) as two vectors. They complete define the rotation matrix R the third column can defined as the orthogonal vector $\mathbf{n}=\mathbf{0} \times \mathbf{a}$
- The resulting rotation matrix is then

$$
\boldsymbol{R}=\left(\begin{array}{lll}
n_{x} & o_{x} & a_{x} \\
n_{y} & o_{y} & a_{y} \\
n_{z} & o_{z} & a_{z}
\end{array}\right)
$$

2D Pose Representation

Poses in 3D

- In 2D we will represent the pose of an object by (x, y, θ)
- To represent translations we can use simple vector addition
- $\mathrm{P}_{\text {new }}=\mathrm{P}_{\text {old }}+\mathrm{T}$
- For rotations we can do simple operations

$$
\text { - } P_{\text {new }}=R P_{\text {old }}
$$

- To make operations manageable it is easier to use homogenous transformations
- Representing the vector with an additional element
- $P=(x, y, \theta, 1)^{\top}$
- Or without orientation

$$
\text { - } P=(x, y, 1)^{\top}
$$

- We can consider also the 3 dimensional case

Representing 3D Rotations

- Rotation Matrices (DCM)
- Euler Angles
- Eulerian
- Cardanian
- Gimbal Lock
- Axis-Angle
- Unit Quaternions

3D Representation

- Basic model - $\mathrm{P}=(\mathrm{x}, \mathrm{y}, \mathrm{z}, 1)^{\top}$
- Structure of a transformation matrix

$$
\xi=\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \boldsymbol{R}_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \\
& \boldsymbol{R}_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \\
& \boldsymbol{R}_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- The relation between reference frames is exactly the same as before

Representing rotations

- There are two commonly used rotation representations
- Euler rotations are represented by rotations about axes
- ZYZ, XYX, YXY, YZY, ZXZ
- Cardanian type rotations are about all three axes
- XYZ, XZY, YZX, YXZ, ZXY, ZYX
- The Euler representation is widely used in Aerospace and Mechanical Dynamics. The most common model is ZYZ, i.e.

$$
\boldsymbol{R}=\boldsymbol{R}_{z}(\phi) \boldsymbol{R}_{y}(\theta) \boldsymbol{R}_{z}(\psi)
$$

- Represented by the three angles of rotation.
- Another commonly used representation is pitch-roll-yaw

$$
\boldsymbol{R}=\boldsymbol{R}_{x}\left(\theta_{r}\right) \boldsymbol{R}_{y}\left(\theta_{p}\right) \boldsymbol{R}_{z}\left(\theta_{y}\right)
$$

- Often seen in maritime applications. Typically x direction is forward, y is to the right and z is downward.

Roll-Pitch-Yaw

$\mathcal{R}_{v}^{b}(\phi, \theta, \psi)=\mathcal{R}_{v 2}^{b}(\phi) \mathcal{R}_{v 1}^{v 2}(\theta) \mathcal{R}_{v}^{v 1}(\psi)$
(2.4)

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
c_{\theta} c_{\psi} & c_{\theta} s_{\psi} & -s_{\theta} \\
s_{\phi} \mathrm{s}_{\theta} c_{\psi}-\mathrm{c}_{\phi} \mathrm{s}_{\psi} & \mathrm{s}_{\phi} \mathrm{s}_{\theta} \mathrm{s}_{\psi}+\mathrm{c}_{\phi} \mathrm{c}_{\psi} & \mathrm{s}_{\phi} \mathrm{c}_{\theta} \\
\mathrm{c}_{\phi} \mathrm{s}_{\theta} \mathrm{c}_{\psi}+\mathrm{s}_{\phi} \mathrm{s}_{\psi} & \mathrm{c}_{\phi} \mathrm{s}_{\theta} \mathrm{s}_{\psi}-\mathrm{s}_{\phi} \mathrm{c}_{\psi} & \mathrm{c}_{\phi} \mathrm{c}_{\theta}
\end{array}\right),
\end{aligned}
$$

Beard, 20 I I, Small Unmanned Aircraft
(c) Henrik I Christensen

Representations of Pose - Overview

representation	\oplus	\ominus	rotn.	transl.	dim	MATLAB
$(x, y, \theta) \in \mathbb{R}^{2} \times \mathbb{S}$			\checkmark	\checkmark	2D	
$\boldsymbol{T} \in S E(2)$	$\boldsymbol{T}_{1} \mathrm{~T}_{2}$	\boldsymbol{T}^{-1}	\checkmark	\times	2D	se2 (x, y)
$\boldsymbol{R} \in S O(2)$	$\mathrm{R}_{1} \mathrm{R}_{2}$	\boldsymbol{R}^{T}	\times	\checkmark	2D	$\operatorname{se} 2(0,0, t h)$
$\boldsymbol{T} \in S E(2)$	$\mathrm{T}_{1} \mathrm{~T}_{2}$	\boldsymbol{T}^{-1}	\checkmark	\checkmark	2D	$\operatorname{se} 2(\mathrm{x}, \mathrm{y}, \mathrm{th})$
$(x, y, z, \Gamma) \in \mathbb{R}^{3} \times \mathbb{S}^{3}$			\checkmark	\checkmark	3D	
$\boldsymbol{R} \in \operatorname{SO}(3)$	$\mathrm{R}_{1} \mathrm{R}_{2}$	\boldsymbol{R}^{T}	\times	\checkmark	3D	rotx, roty, ...
$\Gamma \in \mathbb{S}^{3}$	\times			\checkmark	3D	tr2eul, eul2tr
$\Gamma \in \mathbb{S}^{3}$	\times			\checkmark	3D	tr2rpyl, rpy2tr
$\boldsymbol{T} \in S E$ (3)	$\boldsymbol{T}_{1} \mathrm{~T}_{2}$	\boldsymbol{T}^{-1}	\checkmark	\checkmark	3D	transl ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
$\dot{q} \in \mathbb{Q}$	$\stackrel{q}{1}_{1}^{19} 2$	$\stackrel{q}{ }^{-1}$	\times	\checkmark	3D	quaternion, ...

For the case of quaternions our generalized pose is $\xi \sim \dot{q} \in \mathbb{Q}$ and

$$
\dot{q}_{1} \oplus \dot{q}_{2} \mapsto s_{1} s_{2}-v_{1} v_{2},<s_{1} v_{2}+s_{2} v_{1}+v_{1} \times v_{2}>
$$

which is known as the quaternion or Hamilton product,' and

$$
\ominus \dot{q} \mapsto \dot{q}^{-1}=s,\langle-v>
$$

which is the quaternion conjugate. The zero pose $0 \mapsto 1<0,0,0\rangle$ which is the identity quaternion. A vector $v \in \mathbb{R}^{3}$ is rotated $\dot{q} \cdot v \mapsto q \dot{q} \dot{q}(v) \dot{q}^{-1}$ where $\hat{\gamma}(v)=0,\langle v\rangle$ is known as a pure quaternion.

(c) Henrik I Christensen

Time and motion

- Robotics is often about movement from a position A to $B\left(P_{A} \rightarrow P_{B}\right)$
- Typically we have additional constraints
- Smooth trajectory
- Time constraints
- Maximum speed
- Acceleration
- Jerk
- How can we formulate trajectories that satisfy these constraints?

Smooth trajectories in 1-D

- For representation of trajectories we can use polynomials
- A typical example is a quintic polynomial
- $\mathrm{S}(\mathrm{t})=\mathrm{A} \mathrm{t}^{5}+\mathrm{B} \mathrm{t}^{4}+\mathrm{C} \mathrm{t}^{3}+\mathrm{D} \mathrm{t}^{2}+\mathrm{Et}+\mathrm{F}$ with $\mathrm{t} \in[0, \mathrm{~T}]$
- It will have smooth first and second order derivatives
- An example of such models is the clothoid model for roads in Europe
- An alternative is use of linear segments with parabolic blend
- Smooth trajectories, with linear velocity variations
- The motion has step changes in acceleration
-Where do we see this type of trajectories?
- Lets look at a couple of examples

Example code from the RTB

from roboticstoolbox import quintic
$\mathrm{tg}=$ quintic $(1,2,10)$
\# Trajectory created by quintic: 10 time steps x 1 axes len(tg)
\# 10
tg.
\# array([1. , 1.0115, 1.0764, 1.2099, 1.3967, 1.6033, 1.7901,
\# 1.9236, 1.9885, 2.])
tg.plot()

Linear Segment with

Parabolic Blend

Pure trapezoidal

from roboticstoolbox import trapezoidal
$t g=$ trapezoidal(1, 2, 10)
\# Trajectory created by trapezoidal: 10 time steps $\times 1$ axes
len(tg
$\# 10$
tg.q
\# array([1. $, ~ 1.0278, ~ 1.1111, ~$
. , $1.4167,1.5833,1.75,1.8889,1.9722,2$.])

Multiple dimensions,

Multi-SEGMENT

Multi-segment trajectories

- Frequently the motion is not simply a motion from A to B, but a more complex motion to cover a set of trajectories.
- We can define a set of via points.
- We can "blend" at the via points to achieve acceleration around those areas, but closers to constant velocity elsewhere

(c) Henrik I Christensen

Multi-dimensional case

- The single dimensional case generalizes directly to multiple dimensions / multiple axes
- Most robot controllers will directly generate trajectories given a specification of given constraints
- Example:

Cartesian Motion

Cartesian motion

- We could do the same in Cartesian space
- We can define points and do linear interpolation between them
- Animate1 - step change
- Animate2 - smooth motion

Examples of use of moving reference frames

- Most common example
- Inertial Navigation System (INS)
- Inertial Measurement Unit (IMU)
- Estimation of ego-motion
- Estimation of vehicle motion from GPS + INS/IMU
- Estimation of end-effector motion
- Estimation of motion of people (and gestures)

Inertial Navigation

- Measure angular velocity with gyroscope, acceleration with accelerometer
- Integrate over time:

$$
\begin{aligned}
& \boldsymbol{R}\langle k+1\rangle=\delta_{t} \boldsymbol{S}(\boldsymbol{\omega}) \boldsymbol{R}\langle k\rangle+\boldsymbol{R}\langle k\rangle \\
& { }^{0} \boldsymbol{a}={ }^{0} \boldsymbol{R}_{B}{ }^{B} \boldsymbol{a}
\end{aligned}
$$

Time-varying coordinate frames

- Handling rotation of coordinate frames is a little more complex
- We can write the derivative of the rotation matrix

$$
\dot{R}(s)=S(\omega) R(t)
$$

- Where

$$
S(\omega)=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]
$$

- where omega describes the rotation around each axis
- We can do the transformation directly in homogenous coordinates, i.e.

$$
T=\left[\begin{array}{cc}
S\left(\delta_{\theta}\right) & \delta_{d} \\
0 & 0
\end{array}\right]+I_{4 x 4}
$$

Interpolation in 3D

- Suppose $\delta=c(\theta / 2)<s(\theta / 2) \mathbf{v}>$ is rotation between q_{1} and q_{2}
- $\operatorname{Slerp}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{t}\right)=$

$$
\mathrm{q} \mid \oplus \mathrm{c}(\mathrm{t} \theta / 2)<\mathrm{s}(\mathrm{t} \theta / 2) \mathbf{v}>
$$

(c) Henrik I Christensen

Summary

- A few foundational concepts on position, orientation, time and trajectories
- Many different models for representation
- Position is relative easy
- Rotation has a number of issues to consider
- Using homogenous transformations often pays off
- We will use reference frames extensively.
- Robotics is about estimation, control and planning across references frames
- Many more foundational concepts covered in the:
- Handbook of Robotics, B. Siciliano \& O. Khatib, Springer Verlag, 2010
- Robotics, Vision and Control, P. Corke, Springer Verlag, STAR Volume 73, Oct 2011 (incl. MATLAB toolbox)

