Robotics programming with ROS

Introduction and installation

Google Self-Driving Car Amazon Prime Air Savioke Relay

Adopted from Justin Huang
https://www.youtube.com/c/JustinHuang101/

Robotics in the real world

A Systematic Approach What is ROS?

to Learning
Robot Programming .
with ROS A software framework for programming robots

Prototypes originated from Stanford Al research, officially created and
Progr ing \ <A developed by. W|I.Iow Garage starting in 2007. .
RObOtS e Currently maintained by Open Source Robotics Foundation

ROS Consists of infrastructure, tools, capabilities, and ecosystem

APRACTICAL INTRODUCTION TO THE ROBOT ORERATING SYSTEM

Morgan Quigley, Brian Gerkey
& William D. Smart

Good references

Advantages and Disadvantages of ROS

Advantages Disadvantages

Provides lots of infrastructure, e Approaching maturity, but still

tools, and capabilities changing

Easy to try other people's work and Security and scalability are not
share your own first-class concerns

Large community 0OSes other than Ubuntu Linux

Free, open source, BSD license are not well supported

Great for open-source and researchers Not great for mission-critical tasks

Prerequisites

Ubuntu Linux 16.04+

A fairly recent/fast computer

Mostly to run the simulation
Familiarity with developing in a Linux environment
Knowledge of programming in C++ and/or Python

About these tutorials

Focus is on ROS concepts and software
engineering

Mostly developing with a Turtlebot in simulation
A mix of explanation and coding

Recommend checking out the official ROS
tutorials and documentation

http://wiki.ros.org/ROS/Tutorials

Turtlebot

Architecture

Organized as a network of nodes.

Many nodes run on a computer, but the network can span across many
computers.

Each node performs a single task.

Nodes coordinate with each other through topics and services.

ROS Master Example: self-driving car

Gives you a 1km x
))) Looks at the road. Tells us Road map 1km tile of the road

® The ROS Master is a program that stores information about the network. Useful for staying where we map at a time.
: . - . Located in La Jolla,
® Nodes register themselves with the Master on startup. in the fines. are. oA oo a

® Nodes ask the Master where to find other nodes. After that, nodes
. . i . Uses sensor data
establish peer-to-peer communication with each other.

LNIELNGA L W= Path planner
should move.

Decides how the wheels RS
should move to go in a planner

particular direction

Left wheel Right wheel

controller controller
Moves the wheels ROS Master
forward or backward.

Topics Services

Topics are streams of data.

Data can come consistently, many times a second (e.g., video)

Data can come intermittently (e.g., break pedal)

A topic is uniquely identified by its name

Nodes can publish data to a topic, or subscribe to data published onto it.

Think of it as a function call or an RPC.

A server provides a service.

A client calls the service, waits, then gets a response back.
Also uniquely identified by name.

API design

Camera

Topics in: None
Topics out:

/camera_image
Services: None

Path planner

Topics in:
/camera_image, /gps
Topics out:

/direction

Services: None

ROS Installation

e ROS.org

GPS

Topics in: None

Topics out:

Publishes location to /gps
Services: None

Locomotion planner

Topics in: /direction
Topics out:
/left_direction,
/right_direction
Services: None

http://wiki.ros.org/melodic/Installation/Ubuntu

e Guides (dated, but still valuable)

Road map server

Topics in: None

Topics out: None
Services:

Tile get_tile(Location loc)

Wheel controller

Topics in: /left_direction
Topics out: None
Services: None

http://file.ncnynl.com/ros/ros_by_example_v1_indigo.pdf

http://file.ncnynl.com/ros/ros_by_example_v2_indigo.pdf

Messages

® Main languages for ROS are C++ and Python.

® Messages are a language-agnostic way to represent data.

Publishing and subscribing

ROS tutorial #2

ROS computation graph Publishing and subscribing

Any node can publish a message to any topic
Any node can subscribe to any topic
Topic 1 Topic 2 Multiple nodes can publish to the same topic
W ‘ol BNNRRN /cmd-vel RN Multiple nodes can subscribe to the same topic
A node can publish to multiple topics
Wheel Path Motor

I —— ST controller A node can subscribe to multiple topics

Publish/subscribe tools Messages

rosnode list A serialization format for structured data

rosnode info /some_node Allows nodes written in C++ and Python to communicate
rostopic list with each other

rostopic info /some_topic Defined in a .msg file

rostopic echo /some_topic Must be compiled into C++ / Python classes before using
rostopic pub /some_topic msg/MessageType "data: value" them

What is the ROS master?

A server that tracks the network addresses of all other nodes
o Also tracks other information like parameters
Informs subscribers about nodes publishing on the same topic
Publisher and subscriber establish a peer-to-peer connection
Nodes must know network address of master on startup (ROS_MASTER_URI)
Can be started with roscore or roslaunch

Subscribing to /topic
e) Master
Publishing /topic on

localhost:1234 localhost:1234 is

publishing /topic

Message data for /topic Subscriber

Services
ROS tutorial #3

Are we there yet?

e Robot publishes the name and
distance to the closest landmark
Make the robot print out "I'm near
the {landmark}" when it enters one

of the circled zones
E.g., "I'm near the cube"

Zones are circles with 1 meter
diameter

What are services?

e ROS's remote procedure call (RPC)
e A node can implement one or more services (server)
e Any node can call a service (client)
e Calls are synchronous / blocking
o Actions are preferred for long-running tasks

GetGripperState request
Node: _— Node:
/remote_contro| | — /robot_state

Response: open ‘ ‘

Service messages Service command-line tools

Example: GetDistance.srv rosservice list

rosservice info /some_service

rosservice call /some_service "param1: 0.0"
-—- rossrv show my_msgs/ServiceName

e Must define a .srv string name
message that defines a

Request message and a
Response message float64 distance

When to use services? GetDistance and

N . . GetClosest
e In many cases, writing a library function is better

e Quick operations We will create two services
o For long running functions, use Actions instead Sl E A Tl e e
. o name of a landmark and return
o Ci+/ Python Interoperablhty the distance to the landmark
e When one computer is connected to real hardware GetClosest will return the name of
the closest landmark

ROS1 vs ROS2

Linux 14.04-20.04 (OS X?)
TCP/IP
C++ (and Python 2 (and some 3)
Build System — Cmake
One Node - One Process
Launchfile (XML)

Fixed ROS Graph (in theory)
No direct support
Add-on
Specialized Msg Format
Programmer has responsibility
Parameters in Launchfile
Crawl file space

Linux, 0SX, Win 10, ... (full CI)
DDS: TCP, SHM, ...
C++ and Python 3.5+
Python/Ament (build, install, test, ...)
One Node — One/Many Processes
Flexible orchestration

ROS Graph is a true graph / dynamic
Full RT support
Integral to design
Through DDS
Each Node has its own namespace
Separate parameter server
Index server

More information

Justin Huang YouTube channel (C++/Python node start)

Wiki.ros.org & www.ros2.org

Numerous hands-on guides to get started
https://autonomousvehiclelaboratory.github.io/RB5_Robotics_Tutorials/

