
Robotics programming with ROS
Introduction and installation

Adopted from Justin Huang
https://www.youtube.com/c/JustinHuang101/

Robotics in the real world

Google Self-Driving Car Savioke RelayAmazon Prime Air

Good references

What is ROS?

● A software framework for programming robots
● Prototypes originated from Stanford AI research, officially created and 

developed by Willow Garage starting in 2007
● Currently maintained by Open Source Robotics Foundation
● Consists of infrastructure, tools, capabilities, and ecosystem



Advantages and Disadvantages of ROS

● Provides lots of infrastructure, 
tools, and capabilities

● Easy to try other people's work and 
share your own

● Large community
● Free, open source, BSD license

Great for open-source and researchers

Advantages

● Approaching maturity, but still 
changing

● Security and scalability are not 
first-class concerns

● OSes other than Ubuntu Linux 
are not well supported

Not great for mission-critical tasks

Disadvantages

About these tutorials

● Focus is on ROS concepts and software 
engineering

● Mostly developing with a Turtlebot in simulation
● A mix of explanation and coding
● Recommend checking out the official ROS 

tutorials and documentation

● http://wiki.ros.org/ROS/Tutorials

Turtlebot

Prerequisites

● Ubuntu Linux 16.04+
● A fairly recent/fast computer

○ Mostly to run the simulation

● Familiarity with developing in a Linux environment
● Knowledge of programming in C++ and/or Python

Architecture

● Organized as a network of nodes.
● Many nodes run on a computer, but the network can span across many 

computers.
● Each node performs a single task.
● Nodes coordinate with each other through topics and services.



ROS Master

● The ROS Master is a program that stores information about the network.
● Nodes register themselves with the Master on startup.
● Nodes ask the Master where to find other nodes. After that, nodes 

establish peer-to-peer communication with each other.

Example: self-driving car

Path planner

Left wheel 
controller

Right wheel 
controller

Locomotion 
planner

Camera

ROS Master

Road map 
server

Looks at the road. 
Useful for staying 

in the lines.
GPS

Tells us 
where we 
are.

Gives you a 1km x 
1km tile of the road 
map at a time.
Located in La Jolla, 
CA

Uses sensor data 
to plan how the car 

should move.

Decides how the wheels 
should move to go in a 

particular direction

Moves the wheels 
forward or backward.

Topics

● Topics are streams of data.
● Data can come consistently, many times a second (e.g., video)
● Data can come intermittently (e.g., break pedal)
● A topic is uniquely identified by its name
● Nodes can publish data to a topic, or subscribe to data published onto it.

Services

● Think of it as a function call or an RPC.
● A server provides a service.
● A client calls the service, waits, then gets a response back.
● Also uniquely identified by name.



API design
Camera

Topics in: None
Topics out:
/camera_image
Services: None

GPS Road map server

Topics in: None
Topics out:
Publishes location to /gps
Services: None

Topics in: None
Topics out: None
Services:
Tile get_tile(Location loc)

Path planner

Topics in: 
/camera_image, /gps
Topics out:
/direction
Services: None

Locomotion planner

Topics in: /direction
Topics out:
/left_direction, 
/right_direction
Services: None

Wheel controller

Topics in: /left_direction
Topics out: None
Services: None

Messages

● Main languages for ROS are C++ and Python.
● Messages are a language-agnostic way to represent data.

ROS Installation

● ROS.org

○ http://wiki.ros.org/melodic/Installation/Ubuntu

 

● Guides (dated, but still valuable)

○ http://file.ncnynl.com/ros/ros_by_example_v1_indigo.pdf 

○ http://file.ncnynl.com/ros/ros_by_example_v2_indigo.pdf

Publishing and subscribing
ROS tutorial #2



ROS computation graph

Node 1 Node 2 Node 3

Wheel 
odometer

Path 
planner

Motor 
controller

Topic 1
/odom

Topic 2
/cmd_vel

x: 0.1
y: -1
z: 0

Forward: 0.2
Turn: 0

Publishing and subscribing

● Any node can publish a message to any topic
● Any node can subscribe to any topic
● Multiple nodes can publish to the same topic
● Multiple nodes can subscribe to the same topic
● A node can publish to multiple topics
● A node can subscribe to multiple topics 

Publish/subscribe tools

● rosnode list
● rosnode info /some_node
● rostopic list
● rostopic info /some_topic
● rostopic echo /some_topic
● rostopic pub /some_topic msg/MessageType "data: value"

Messages

● A serialization format for structured data
● Allows nodes written in C++ and Python to communicate 

with each other
● Defined in a .msg file
● Must be compiled into C++ / Python classes before using 

them



What is the ROS master?
● A server that tracks the network addresses of all other nodes

○ Also tracks other information like parameters
● Informs subscribers about nodes publishing on the same topic
● Publisher and subscriber establish a peer-to-peer connection
● Nodes must know network address of master on startup (ROS_MASTER_URI)
● Can be started with roscore or roslaunch

Publisher Subscriber

Master
Publishing /topic on 
localhost:1234

Subscribing to /topic

localhost:1234 is 
publishing /topic

Message data for /topic

Are we there yet?

● Robot publishes the name and 
distance to the closest landmark

● Make the robot print out "I'm near 
the {landmark}" when it enters one 
of the circled zones
○ E.g., "I'm near the cube"

● Zones are circles with 1 meter 
diameter

Barrier

Cylinder

Dumpster

Bookshelf

Cube

Services
ROS tutorial #3

What are services?

● ROS's remote procedure call (RPC)
● A node can implement one or more services (server)
● Any node can call a service (client)
● Calls are synchronous / blocking
○ Actions are preferred for long-running tasks

Node:
/robot_state

Node:
/remote_control

GetGripperState request

Response: open



Service messages

● Must define a .srv 
message that defines a 
Request message and a 
Response message

Example: GetDistance.srv

string name

---

float64 distance

Service command-line tools

● rosservice list
● rosservice info /some_service
● rosservice call /some_service "param1: 0.0"
● rossrv show my_msgs/ServiceName

When to use services?

● In many cases, writing a library function is better
● Quick operations
○ For long running functions, use Actions instead

● C++ / Python interoperability
● When one computer is connected to real hardware

GetDistance and 
GetClosest

● We will create two services
● GetDistance will given in the 

name of a landmark and return 
the distance to the landmark

● GetClosest will return the name of 
the closest landmark

Barrier

Cylinder

Dumpster

Bookshelf

Cube



ROS1 vs ROS2
● Linux 14.04-20.04 (OS X?)
● TCP/IP
● C++ (and Python 2 (and some 3)
● Build System – Cmake
● One Node – One Process
● Launchfile (XML)

○ Fixed ROS Graph (in theory)
● No direct support
● Add-on
● Specialized Msg Format
● Programmer has responsibility
● Parameters in Launchfile
● Crawl file space

● Linux, OSX, Win 10, … (full CI)
● DDS: TCP, SHM, … 
● C++ and Python 3.5+
● Python/Ament (build, install, test, …)
● One Node – One/Many Processes
● Flexible orchestration

○ ROS Graph is a true graph / dynamic
● Full RT support
● Integral to design
● Through DDS
● Each Node has its own namespace
● Separate parameter server
● Index server

● HW
● IPC
● Language
● Build
● Nodes/Thread
● Orchestration

● Real-Time
● Security
● Middleware
● Namespaces
● Parameters
● Resource lookup

More information

● Justin Huang YouTube channel (C++/Python node start)
● Wiki.ros.org & www.ros2.org
● Numerous hands-on guides to get started
● https://autonomousvehiclelaboratory.github.io/RB5_Robotics_Tutorials/


