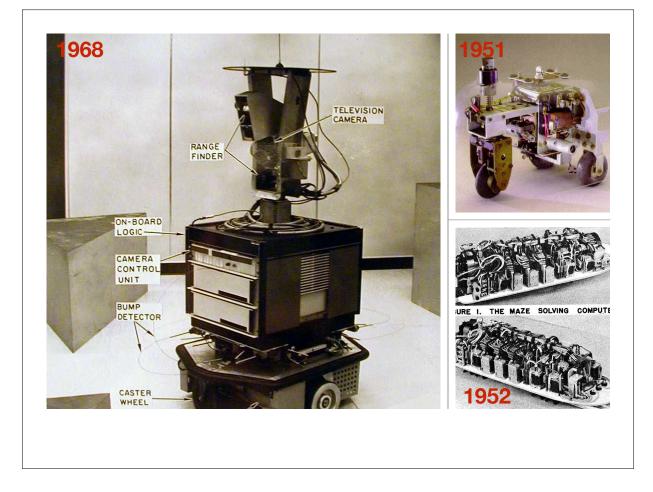
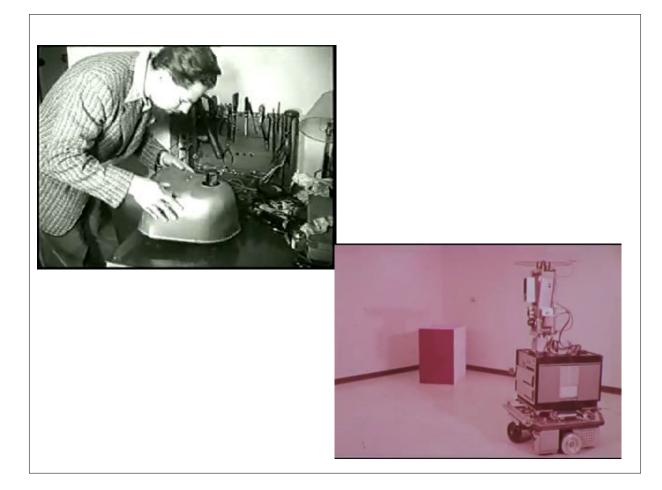


(c) Henrik I Christensen





More Modern AGVs

A widely advertised example - KIVA Systems (now Amazon)

(c) Henrik I Christensen

KIVA example

Other Modalities

Mobility: Train

- Configuration: 1D
- Task Space: R
- C = T

Mobility: Hovercraft

- Configuration:(x,y,θ)
- Actuators: 2DOF
- Task Space: SE(2)
- C = T

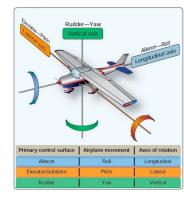
Mobility: Helicopter

- Configuration: $(x,y,z,\theta_r,\theta_p,\theta_y)$
- Actuators: 4DOF (thrust,pitch,roll,tail)
- Task Space: SE(3)
- C = T

Boeing A160 Hummingbird

Mobility: Fixed WING

- Configuration: $(x,y,z,\theta_r,\theta_p,\theta_y)$
- Actuators: 4DOF (thrust, ail, elev, rud)
- Task Space: SE(3)
- C = T



Mobility: Submersible

- Configuration: 6D
- Fully Actuated
- Task Space: SE(3)
- C = T

Wheels

- Regular wheel
 - Non-holonomic constraint
 - x'=v, y'=0
- · Omnidirectional wheel
 - No such constraint

Mobility Recap

 Table 4.1.

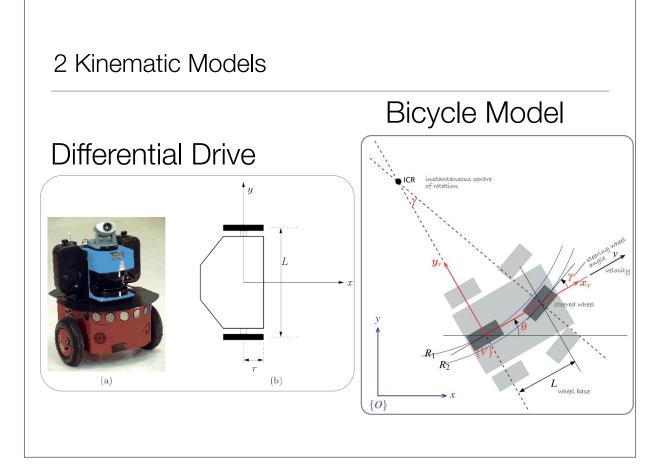
 Summary of parameters for

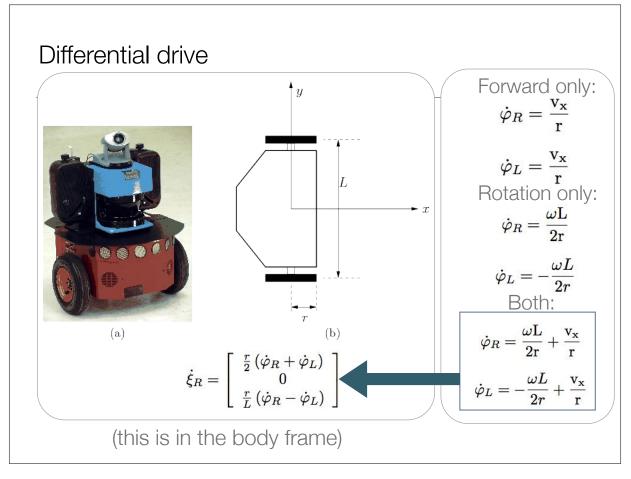
 three different types of vehicle.

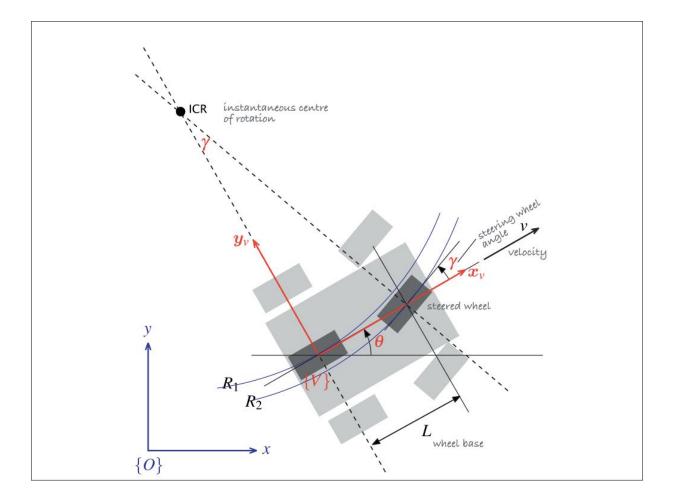
 The +g notation indicates that

 the gravity field can be consid ered as an extra actuator

Vehicle	Degrees of freedom	Number of actuators	Fully actuated?
Train	1	1	~
Hovercraft	3	2	×
Helicopter	6	4+g	×
Fixed wing aircraft	6	4+g	×
6-thruster AUV	6	6	×
Car	3	2	×

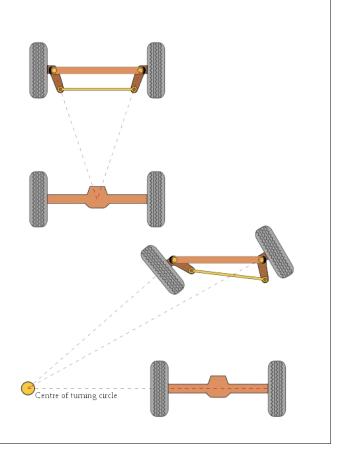






Ackerman Steering

- · Four-wheeled vehicle
- L and R move on circular paths of different radius
- 1812 patent

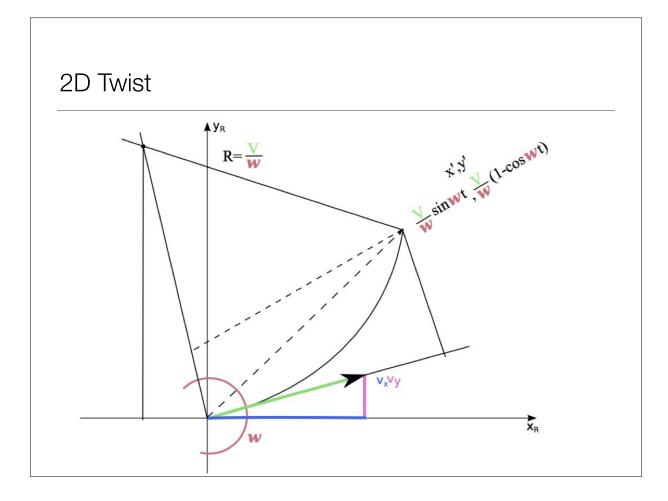


Equations of Motion (See book)

- Angular velocity
 ~ steering angle γ
- Translation velocity
 velocity v
- Non-holonomic constraint
- Undefined for 90° angle

$$\dot{x} = \nu \cos\theta$$
$$\dot{y} = \nu \sin\theta$$
$$\dot{\theta} = \frac{\nu}{L} \tan\gamma$$

$$\dot{y}\cos\theta - \dot{x}\sin\theta \equiv 0$$
 (this is in the world frame)



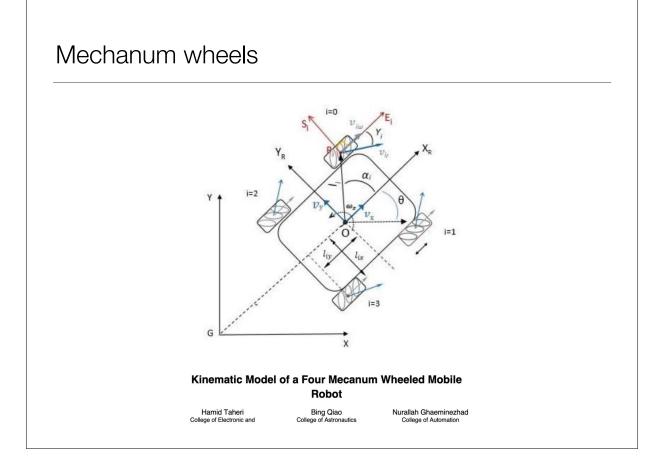
2D Twist

A 2D twist is simply the derivative of a 2D rigid transformation

$$\dot{\xi}_{R}^{W} = \begin{bmatrix} \dot{t}_{x} \\ \dot{t}_{y} \\ \dot{\theta} \end{bmatrix}$$

A robot undergoing a constant twist, expressed in the robot frame, traces out a circular trajectory with radius $R = v/\omega$. Starting from the origin, after some time T we obtain

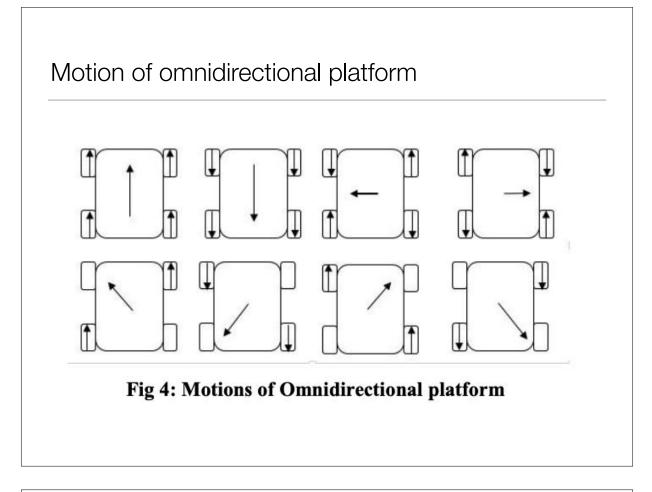
$$\xi(T) = \left(\begin{bmatrix} \cos \omega T & -\sin \omega T \\ \sin \omega T & \cos \omega T \end{bmatrix}, \frac{1}{\omega} \begin{bmatrix} 1 - \cos \omega T & \sin \omega T \\ -\sin \omega T & 1 - \cos \omega T \end{bmatrix} \begin{bmatrix} -v_y \\ v_x \end{bmatrix} \right)$$

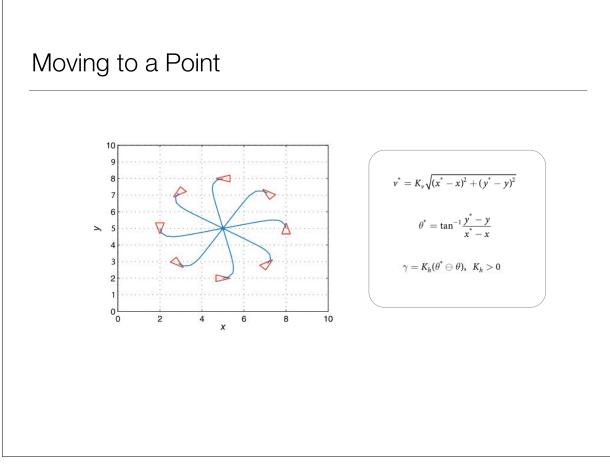


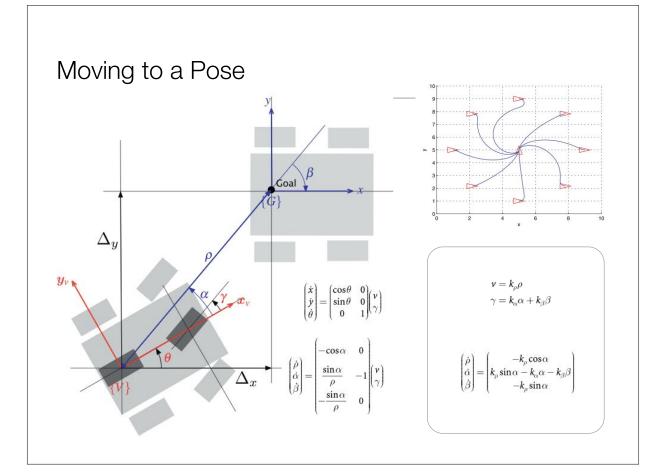
The general kinematic model

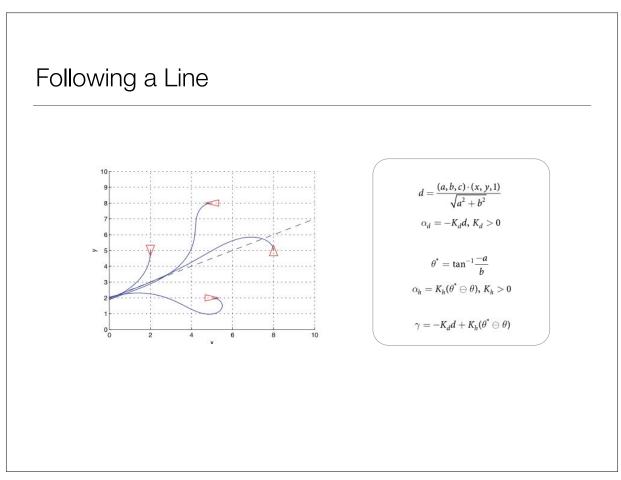
$$\begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{bmatrix} = \frac{-1}{r} \begin{bmatrix} \frac{\cos(\beta_1 - \gamma_1)}{\sin\gamma_1} & \frac{\sin(\beta_1 - \gamma_1)}{\sin\gamma_1} & \frac{l_1\sin(\beta_1 - \gamma_1 - \alpha_1)}{\sin\gamma_1} \\ \frac{\cos(\beta_2 - \gamma_2)}{\sin\gamma_2} & \frac{\sin(\beta_2 - \gamma_2)}{\sin\gamma_2} & \frac{l_2\sin(\beta_2 - \gamma_2 - \alpha_2)}{\sin\gamma_2} \\ \frac{\cos(\beta_3 - \gamma_3)}{\sin\gamma_3} & \frac{\sin(\beta_3 - \gamma_3)}{\sin\gamma_3} & \frac{l_3\sin(\beta_3 - \gamma_3 - \alpha_3)}{\sin\gamma_3} \\ \frac{\cos(\beta_4 - \gamma_4)}{\sin\gamma_4} & \frac{\sin(\beta_4 - \gamma_4)}{\sin\gamma_4} & \frac{l_4\sin(\beta_4 - \gamma_4 - \alpha_4)}{\sin\gamma_4} \end{bmatrix} \begin{bmatrix} \nu_X \\ \nu_Y \\ \omega_Z \end{bmatrix}.$$

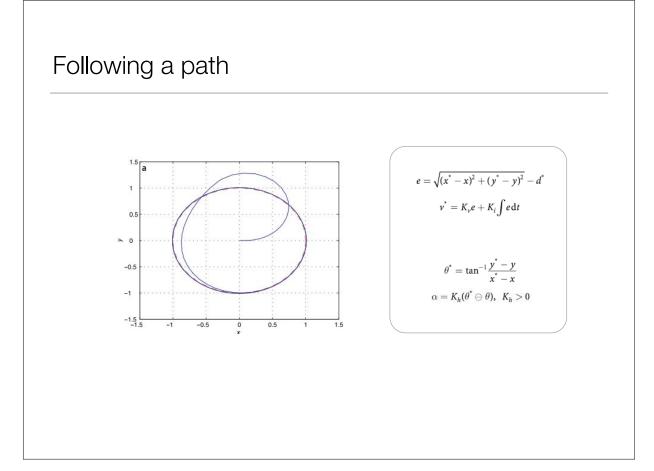
Basic kinematic model $\begin{bmatrix} v_x \\ v_y \\ \omega_z \end{bmatrix} = \frac{r}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & -1 \\ -\frac{1}{(l_x+l_y)} & \frac{1}{(l_x+l_y)} & -\frac{1}{(l_x+l_y)} & \frac{1}{(l_x+l_y)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{bmatrix}$ Wheels l_{ix} i α_i βi li l_{iy} Υi $^{-\pi}/_{4}$ $\pi/2$ 0 $\pi/4$ l 1sw l_x l_y $^{-\pi}/_{2}$ $\pi/4$ $^{-\pi}/_{4}$ l 1 l_x 2sw l_y $\pi/2$ $\pi/4$ 2 3sw $3\pi/_{4}$ l l_x l_y $-\pi/2$ $-3\pi/_{4}$ $^{-\pi}/_{4}$ l 3 4sw l_x l_y https://research.ijcaonline.org/volume113/number3/ pxc3901586.pdf

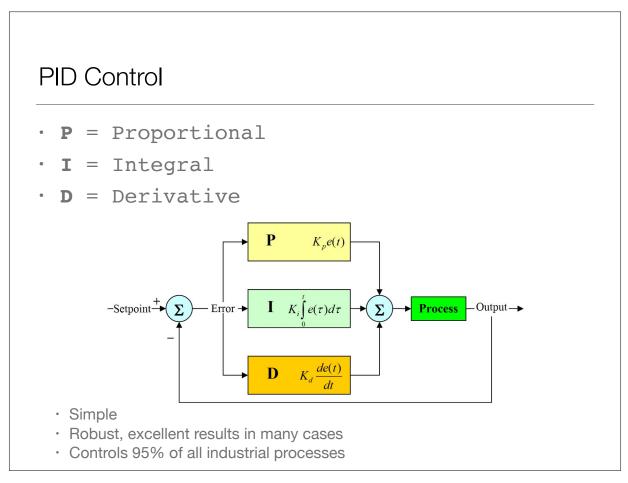






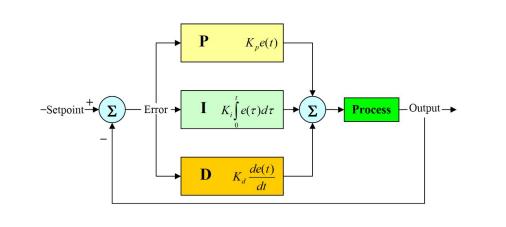






PID Control

- **P** = Proportional: correct
- **I** = Integral: reduce tracking error
- D = Derivative: stabilize (anticipate)



Code Example

```
class PID:

def __init__(self, Kp, Ki, Kd):

self.previous_error = 0

self.kp = Kp

self.Kj = Kj

self.Kd = Kd

def calc(self, dt, setpoint, y):

error = setpoint - y

self.integral += error*dt

derivative = (error - self.previous_error)/dt

u = self.Kp*error + self.Ki*self.integral + self.Kd*derivative

self.previous_error = error

return u
```

Python example due to Andy Henshaw at GTRI

PID Tuning

- · Ziegler-Nichols
 - Start with P only
 - Increase Kp until output oscillates
 - Call that "Ultimate gain" Ku ,and call the oscillation period Tu

Ziegler-Nichols method ^[1]					
Control Type	K_p	K_i	K_d		
Р	$0.5K_u$	-	-		
PI	$0.45K_u$	$1.2K_p/T_u$	-		
PD	$0.8K_u$	-	$K_pT_u/8$		
classic PID ^[2]	$0.60K_u$	$2K_p/T_u$	$K_pT_u/8$		

Source: Wikipedia

Summary

- Configuration of mobile systems
 - Configuration Space
 - Actuators
 - 2D vs 3D space
 - · Is the system fully controlled
- · Simple example of kinematic models for mobile systems
 - Bi-cycle, Differential drive, Ackerman,
- Basic control algorithms