

Robot Sensors

Henrik I Christensen

Contextual Robotics UC San Diego La Jolla, CA hichristensen@ucsd.edu

The Robot Structure

Henrik I Christensen (UCSD CSE)

Sensors

3 / 42

Robots and Sensors

Robots and Sensors

Henrik I Christensen (UCSD CSE)

Sensors

5 / 42

Robots and Sensors

Sensors

• Uncertainty in the layout of the environment due to lack of models or unknown dynamics

- Execution of commands is uncertain due to imperfect actuation
- Sensors are needed to cope with the uncertainty and provide an estimate of "robot state" and environmental layout.

Sensor classes

• Sensing is divided according to the purpose:

Proprioception Estimation of the internal state of the robot. Configuration, temperature, current, speed of axis, ...

Exteroception Estimation of the state of the environment with respect to robot

• Sensors are also divided according to measurement principle

Passive Uses ambient energy to perform the measurement

Sensors

Active Transmits energy into environment to allow measurements

Sensors in mobile robotics

Henrik I Christensen (UCSD CSE)

Classification	Sensor Type	PC/EC	A/P
Tactile sensors	Switches/Bumpers	EC	Р
	Optical barriers	EC	А
	Proximity	EC	Р
Haptic sensors	Contact arrays	EC	Р
	Force/Torque	EC/PC	Р
	Resistive	EC	Р
Motor/Axis sensors	Brush Encoders	PC	Р
	Potentiometers	PC	Р
	Resolvers	PC	А
	Optical encoders	PC	А
	Magnetic encoders	PC	А
	Inductive encoders	PC	А
	Capacity encoders	EC	А
	Classification Tactile sensors Haptic sensors Motor/Axis sensors	ClassificationSensor TypeTactile sensorsSwitches/Bumpers Optical barriers ProximityHaptic sensorsContact arrays Force/Torque ResistiveMotor/Axis sensorsBrush Encoders Potentiometers Resolvers Optical encoders Magnetic encoders Inductive encoders	ClassificationSensor TypePC/ECTactile sensorsSwitches/BumpersECOptical barriersECProximityECHaptic sensorsContact arraysECForce/TorqueEC/PCResistiveECMotor/Axis sensorsBrush EncodersPCPotentiometersPCResolversPCOptical encodersPCMagnetic encodersPCInductive encodersPCCapacity encodersEC

Sensors for mobile robots

	Classification	Sensor Type	PC/EC	A/P
	Heading sensors	Compass	EC	Р
		Gyroscopes	PC	Р
		Inclinometers	EC	A/P
/	Beacon based	GPS	EC	A
	(Postion wrt	Active Optical	EC	А
	an inertial	RF beacons	EC	А
	frame)	Ultrasound beacon	EC	А
		Reflective beacons	EC	А
-	Ranging	Capacitive sensor	EC	Р
		Magnetic sensors	EC	P/A
		Camera	EC	P/A
		Ultra-sound	EC	A
		Laser range	EC	А
		Structures light	EC	А

Sensors

Henrik I Christensen (UCSD CSE)

Sensors for mobile robots

	Classification	Sensor Type	PC/EC	A/P
	Speed/motion	Doppler radar	EC	Α
		Doppler sound	EC	А
		Camera	EC	Р
		Accelerometer	EC	Р
_	Identification	Camera	EC	Р
		RFID	EC	А
		Laser ranging	EC	А
		Radar	EC	А
		Ultra-sound	EC	А
		Sound	EC	Р

Sensing types

Scalar Estimation of a scalar / amplitude entity such as temperature, intensity, current, force, ...

Position Estimation of 1D, 2D or 3D position. Typically in (x, y) or (ρ, θ) i.e. Cartesian or Polar

Sensors

Derivatives Estimation of motion or acceleration

Characterizing Sensor Performance

Dynamic Range

Henrik I Christensen (UCSD CSE)

- Ratio between upper and lower limits (usually in decibel)
- Power measurements (1 mW to 20 W)

$$10\log\frac{20}{0.001} = 43dB$$

• Voltage measurements (1 mV to 20 v)

$$20 \log \frac{20}{0.001} = 86 dB$$

- I.e. $F \log \frac{Max}{Mix}$, where F=10 for power entities and F=20 for no-power entities
- Range:
 - Upper limit of measurements

Characterizing Sensor Performance

- minimum difference between two values
- often lower limit = resolution
- Linearity
 - Variation of output as a function of input
 - Ideally Y = aX implies $Y = a(X_1 + X_2)$
- Bandwidth/Frequency
 - Speed of response, delay

Henrik I Christensen (UCSD CSE)

Characterizing Sensor Performance

Sensitivity

- minimum input change to result in output change
- Cross sensitivity
 - Variation with other changes such as temperature
- Error/accuracy
 - Difference between actual value and generated value

$$accuracy = 1 - \frac{|m - v|}{v}$$

Sensors

where m is the measured value and v is the true value

Characterizing Sensor Performance

• Most sensors generates measurements that are contaminated by noise.

- Systematic noise: errors that could be modelled for example through calibration
- Random noise: errors that cannot be predicted. Typically modelled in a probabilistic fashion
- Precision: reproducibility of measurements

$$precision = \frac{range}{\sigma}$$

Wheel encoder

• Optical encoders. A disc and a diode. Measurement of discrete values. Quadrature encoders enable detection of direction of motion.

Sensors

Henrik I Christensen (UCSD CSE)

Quadrature encoders

Notice what happen when the direction changes:

eng geo.	1	1

Greycoded Encoders

Rotating an 8-bit absolute Gray code disk.

- Counterclockwise rotation by one position increment will cause only one bit to change.
- b. The same rotation of a binary-coded disk will cause all bits to change in the particular case (255 to 0) illustrated by the reference line at 12 o'clock.

[Everett, 1995].

Henrik I Christensen (UCSD CSE)

Sensors

21 / 42

Orientation and heading

- Compass used as a reference since 2000 B.C.
- Today available in solid state technology
- Sensitive to ferro magnetic materials
- High environmental variation

Gyro/Accelerometers

- The inertia of a spinning wheel provides a reference for orientation.
- Today available in fiber-optic and solid state versions
- Double integration implies high noise sensitivity

Henrik I Christensen (UCSD CSE)	Sensors	23 / 42
Ranging		
 Ranging for estimation of methods are used: Time of Flight: Travel 	of position is a very commo el time for a pulse	on methodology. Several
Phase Difference: PhTriangulation: Simple	ase of modulation \propto time of e geometric relations	travel

• From range measurements position can be estimated

Time of Flight – Ranging

• Measures travel time.

Henrik I Christensen (UCSD CSE)

• Speed of propagation c, distance d implies

$$d = c \times t \quad \Rightarrow \quad t = \frac{d}{c}$$

• Travels back and forth so $d = \frac{c - t}{2}$

Sensors

<section-header>
 Phase differencing – Ranging
 At a distance D the phase difference is

 θ = 4πD/λ

 Arptitude [V]
 Prove [M]
 Prove [M]
 Transmitted using PLL which is "inexpensive" technology

Triangulation – Ranging

- Use simple geometric relations to recover depth
- Example is IR/Laser triangulation

$$D = f \frac{L}{x}$$

• Depth inversely proportional to x

Henrik I Christensen (UCSD CSE)	Sensors	27 / 42

Sharp Triangulation Sensors

Position from Range

- One of the most common approaches in robotics
- Consider handling of two range readings

Sensors

Position from Range

Henrik I Christensen (UCSD CSE)

• Given two range pings d_1 , d_2 and known positions: (0,0) and (x_2, y_2) the position of intersection is

$$x = \frac{x_2^2 + d_1^2 - d_2^2}{2x_2}$$
$$y^2 = \frac{2x_2^2d_1^2 + 2d_1^2d_2^2 + 2x_2^2d_2^2 - x_2^4 - d_1^4 - d_2^4}{4x_2^2}$$

• Trivial to compute intersection point(s)

Unique position estimates

• With 3+ range estimates the intersection point is unique

• Noise might contaminate the measurements

Sensors

Ultra-sonic ranging

Henrik I Christensen (UCSD CSE)

- Widely used in underwater for mapping
- In air the main application has been cameras
- Speed of sound $\approx 343 \frac{m}{s}$ so processing is "slow"
- Pulse based time of flight (49.1 kHz)
- Cheap technology for mass products

Sensors

Henrik I Christensen (UCSD CSE)

Underwater Sonar

Mechanical (Imagenex)

Acoustic Lens (U.W.)

Side-scan sonar (Klein)

Henrik I Christensen (UCSD CSE)

Sensors

- color/reflectance
- Very inexpensive (easy interfacing)
- Primarily obstacle detection

Laser Scanning - Beacon Based

- Angular distribution / Known landmarks
- Robust to variations
- Easy to install
- Used in factory settings for AGV systems
- More than 15000 units sold

Henrik I Christensen (UCSD CSE)

Laser Scanning - TOF

• Rotating mirror

Sensors

- Pulsed laser
- Range 10-50 m
- $\bullet~{\rm Resolution}\approx 1~{\rm cm}$
- Sampling rate: 37 Hz

Laser scanner - SICK

- Frequently used sensor system in the past, not replaced by many other providers
- Safety classified
- Unusual error distribution (uniform)
- Price: \$ 4000

Sensors

Modern AMR w. sensors

Henrik I Christensen (UCSD CSE)

Outline

Wrap up

- Overview of methods for sensing
- Brief outline of most typical sensors (ex camera / GPS)

5

Global Positioning System

Contextual Robotics UC San Diego La Jolla, CA hichristensen@ucsd.edu

Henrik I Christensen (UCSD CSE)	GPS	1/43
Outline		
1 Introduction		
2 Position Estimation		
3 System Overview		
Space Segment		
5 Control Segment		
6 User Segment		
Augmentation		
8 GPS Data		
9 WGS		
10 Summary		

Global Navigation Satellite System - GNSS

A family of satellite based systems
 GPS Global Positioning System
 GLONASS Russian Equivalent of GPS
 Galileo EU variation of GPS under construction
 BeiDou The Chinese variation of GNSS

- Background dates back to radio systems used from 1950.
- GPS is one of the most widely used localization systems today

Triangulation

- Triangulation discussed earlier is the basis for the design and operation.
- Formally the method is based on trilateration.
- Estimation of a point position based on distance to a number of reference stations. A minimum of 3 references are need to determine a unit point intersection

Trilateration

$$r_1^2 = x^2 + y^2 + z^2 \tag{1}$$

$$r_2^2 = (x-d)^2 + y^2 + z^2$$
 (2)

$$r_3^2 = (x-i)^2 + (y-j)^2 + z^2$$
 (3)
 \Rightarrow

$$x = \frac{r_1^2 - r_2^2 + d^2}{2d} \tag{4}$$

$$y = \frac{r_1^2 - r_3^2 + i^2 + j^2 - 2ix}{2j}$$
(5)

$$z = \sqrt{r_1^2 - x^2 - y^2}$$
 (6)

Henrik I Christensen (UCSD CSE)	GPS	7 / 43
Trilateration		

- Noise results in poor stability
- In reality many more references are often available
- Explicit consideration of accuracy and stability required in the design of system.

Position Estimation

- Using time of flight as a way to measure distance
- The distance is

$$d = \frac{c \times \Delta t}{2}$$

- Given speed of light $\approx 3 \times 10^8 \frac{m}{s}$
- Flight times might be 30-100 ms, but differences of 3 meters would be on the order of 20 ns, which is a challenge but not impossible

GPS Overview

- System design based on observation of doppler from Sputnik
- First navigation systems launched around 1962
- Space clocks led the way to GPS
- First satelite launched for GPS around 1978
- Initial capability by Dec 1993
- First complete constellation Feb 14, 1994
- Dual use recognized by 1996

Henrik I Christensen (UCSD CSE)

GPS Structure SPACE 思思 RE ar a AN B CONTROL D ZA USER Monitor Stations Za Za Uploading Station Master Station Į-ZA

GPS

Figure 3.4: The Navstar Global Positioning System consists of three fundamental segments: Space, Control, and User. (Adapted from [Getting, 1993].)

Outline

Space Segment

Henrik I Christensen (UCSD CSE)

- Composed of 30+ satellites
- Flying at 20,200 km altitude
- In 6 orbital planes
- Nominally 4 satellites in each plane
- Planes have an inclination of 55° wrt Earth

GPS

Satellites

- 5 different types of satellites are in use
- Weight of a satellites in orbit 1080 kg
- Two different signals are transmitted continuously
- Data rate is 50bits/s
- In addition C/A and P(Y) codes are transmitted at 1.023 * 10⁶ chips/sec.

Control Segment

- Control segment is responsible for health monitoring
- Correction of space trajectories
- Adjustment of clocks (2ns / year)
- Responsible for uploads
- Monitoring through 5 ground stations
- Managed by 50th Space Wing / 2nd Space Command / Schriever Air Force Base

User Segment

- The receivers used by users of all kinds
- An antenna, a multi-channel receiver and a fairly accurate clock
- In many cases GPS receivers have an embedded navigation model
- Some GPS units have direct interface to an IMU to allow operation in the presence of partial occlusion or structural noise
- Many receivers communicate in a proprietary format and in addition in NMEA-183 (and some in NMEA 2000) over a serial line (default 4800 baud 8-N-1)

GPS

Navigation Information

Henrik I Christensen (UCSD CSE)

- Satellites transmit a navigation message at 50bits/s
- The message is 1500 bits long (30 seconds)
 - 300 bits clock, delta, GPS time, health, ...
 - 1200 bits trajectory/orbit data / almanac
- Trajectories are updated each 2 hour
- All times are reported in UTC

Navigation Codes

Henrik I Christensen (UCSD CSE)

C/A Course/Acquisition Code - Allow early detection of position of satellite based on almanac

P(Y) Precise / encrypted code - used primarily by military users Information sent across 1575.42 and 1227.60 MHz frequencies

Accuracy	Accuracy				
LIGHT Ta	able 3.4: Summary of achievable posi plementations of GPS. GPS Implementation Method	sition accuracies for various Position Accuracy			
	C/A-code stand alone	100 m SEP (328 ft)			
	Y-code stand alone	16 m SEP (52 ft)			
	Differential (C/A-code)	3 m SEP (10 ft)			
	Differential (Y-code)	unknown (TBD)			
	Phase differential (codeless)	1 cm SEP			

GPS

(0.4 in)

GPS Error Budget

Segment	Error Source	GPS w. SA [m]	GPS wo SA [m]
Space	Satellite clock stability	3.0	3.0
	Satellite pertubations	1.0	1.0
	Selective availability	32.3	-
	Other (thermal,)	0.5	0.5
Control	Ephemeris pred. error	4.2	4.2
	Other (truster perf.,)	0.9	0.9
User	Ionospheric delay	5.0	5.0
	Tropospheric delay	1.5	1.5
	Receiver noise	1.5	1.5
	Multipath	2.5	2.5
	Other	0.5	0.5
System	Total (RMS)	33.3	8.0

SA turned off May 2, 2000 by executive order.

Henrik I Christensen (UCSD CSE)

GPS

Augmentation Methods

 Augmentation methods designed to reduce errors and produce better accuracy estimates

GPS

- Most frequently used methods
 - Differential GPS (dGPS)
 - Wide-Area Augmentation Services (WAAS)
 - Inertial Navigation System (INS)
 - Assisted GPS (A-GPS)

Differential GPS

Henrik I Christensen (UCSD CSE)

- Uses fixed landmarks and local differentials to correct for errors
- Initially introduced to compensate for SA
- Possible options include
 - Local Radio Beacon
 - US Coast Guard Stations (Maritime Differential GPS)
 - National Differential GPS (NDPS)
 - Close to 80 stations in operations, goal is 128
 - Differential networks also in place throughout Canada and Europe
 - Most stations transmit in the region close to 300 KHz

Differential GPS Sketch

GPS

27 / 43

dGPS Error Budget

	Segment	Error Source	GPS w. SA [m]	LADGPS [m]
Z.	Space	Satellite clock stability	3.0	0.0
		Satellite pertubations	1.0	0.0
		Selective availability	32.3	0.0
		Other (thermal,)	0.5	0.0
•	Control	Ephemeris pred. error	4.2	0.0
		Other (truster perf.,)	0.9	0.0
2	User	Ionospheric delay	5.0	0.0
		Tropospheric delay	1.5	0.0
		Receiver noise	1.5	2.1
		Multipath	2.5	2.5
		Other	0.5	0.5
	System	Total (RMS)	33.3	3.3

Wide Area Augmentation Service (WAAS)

- Objective is an increase in accuracy of 5 times
- WAAS corrections are distributed by satellites (IDs 35-51)
- Uses 25 Ground Stations
- Objective GDOP < 7m

Assisted GPS

- Motivated by Cell Phone 911 usage
- GPS localisation and Base Station Triangulation
- $\bullet\,$ Only useful for cell phones w. GPS and GPRS/3G

Henrik I Christensen (UCSD CSE)

Phone Localization! (wo. GPS)

GPS

Outline

Henrik I Christensen (UCSD CSE)

NMEA - Data
NMEA - 0183 Standard
Combined serial / electrical standard
ASCII protocol for transmission
Originally for marine electronics
RS-232/RS-485/.. serial communication
Most GPS Units today have a USB / Serial connection

GPS

NMEA

- Defined as "sentences"
- Sentences start with a \$ and end with cr/If
- Structure \$GPcmd,field1,field2,field3hh<cr><lf>

Typical NMEA commands

Henrik I Christensen (UCSD CSE)

- LIGHGGA Fix information
 - GLL Lat/Lon data
 - GSA Overall satellite data
 - GRS GPS Range Residuals
 - GST GPS Pseudorange Noise Statistics

GPS

Example NMEA Data

\$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47 GGA Global Position Fix Data 123519 Data acquired 12:35:19 UTC 4807.038,N Latitude 48 deg 07.038' N 01131.000,E Longitude 11 deg 31.000' E 1 Fix Quality (0=invalid .. 2=dGPS) 08 #satellites tracked 0.9 HDOP 545.4,M Altitude in m above sea level 46.9.m Height above WGS-84 ellipsoid empty Time since dGPS update empty dGPS station ID

*47 Checksum of message

Henrik I Christensen (UCSD CSE)

GPS

World Geodetic System (WGS)

- Defines a reference frame for the earth
- Derived from an elliptical model of earth
- Required to perform accurate surveying
- Ellipsoid (WGS-84)

Semi-major axis 6,378,137 m Semi-minor axis 6,356,752.314245 m Inverse flattening 298.257223563

GPS Models

Henrik I Christensen (UCSD CSE)

- LAT/LONG position on the globe
- UTM Universal Traverse Mercator
- Local grids adopted to particular regions are common
 - Most GPS units have at least 30 different models
 - Careful selection is important

GPS

UTM coordinate frame

GPS

Summary

- One of 3 major GNSS systems
- Introduction to the basic principle
- The segmentation of the system
- Typical error sources
- Strategies to compensate for errors
- Data formats and reference models

GPS