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Robots and Sensors
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Sensors

@ Uncertainty in the layout of the environment due to lack of models or
unknown dynamics

@ Execution of commands is uncertain due to imperfect actuation

@ Sensors are needed to cope with the uncertainty and provide an estimate of
“robot state” and environmental layout.
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@ Sensing is divided according to the purpose:

temperature, current, speed of axis, ...

robot

@ Sensors are also divided according to measurement principle

Sensor classes

Proprioception Estimation of the internal state of the robot. Configuration,

Exteroception Estimation of the state of the environment with respect to

Passive Uses ambient energy to perform the measurement

Active Transmits energy into environment to allow measurements
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Sensors

Sensors in mobile robotics

Classification Sensor Type PC/EC A/P
Tactile sensors Switches/Bumpers EC P
Optical barriers EC A
Proximity EC P
Haptic sensors Contact arrays EC P
Force/Torque EC/PC P
Resistive EC P
Motor/Axis sensors ~ Brush Encoders PC P
Potentiometers PC P
Resolvers PC A
Optical encoders PC A
Magnetic encoders PC A
Inductive encoders  PC A
Capacity encoders  EC A
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Sensors for mobile robots

Classification Sensor Type PC/EC A/P
Heading sensors Compass EC P
Gyroscopes PC P
Inclinometers EC A/P
Beacon based GPS EC A
(Postion wrt Active Optical EC A
an inertial RF beacons EC A
frame) Ultrasound beacon EC A
Reflective beacons EC A
Ranging Capacitive sensor EC P
Magnetic sensors ~ EC P/A
Camera EC P/A
Ultra-sound EC A
Laser range EC A
Structures light EC A
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Sensors

Sensors for mobile robots

Classification ~ Sensor Type PC/EC A/P

Speed/motion  Doppler radar  EC A
Doppler sound EC A
Camera EC P
Accelerometer EC P

Identification ~ Camera EC P
RFID EC A
Laser ranging  EC A
Radar EC A
Ultra-sound EC A
Sound EC P
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Sensing types

Scalar Estimation of a scalar / amplitude entity such as temperature,
intensity, current, force, ...

Position Estimation of 1D, 2D or 3D position. Typically in (x,y) or (p, )
i.e. Cartesian or Polar

Derivatives Estimation of motion or acceleration
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Characterizing Sensor Performance

@ Dynamic Range

o Ratio between upper and lower limits (usually in decibel)
e Power measurements (1 mW to 20 W)

10log % = 43dB

e Voltage measurements (1 mV to 20 v)

20
20log —— = B
Olog 0.001 86d.
o le. Flog % where F=10 for power entities and F=20 for no-power entities
@ Range:

o Upper limit of measurements
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Characterizing Sensor Performance

@ Resolution

e minimum difference between two values
o often lower limit = resolution

@ Linearity

e Variation of output as a function of input
o Ideally Y = aX implies Y = a(Xi + X3)

@ Bandwidth/Frequency
e Speed of response, delay
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Characterizing Sensor Performance

@ Sensitivity
@ minimum input change to result in output change
@ Cross sensitivity
o Variation with other changes such as temperature
@ Error/accuracy
e Difference between actual value and generated value

|m — v|
accuracy =1 — —

where m is the measured value and v is the true value
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Characterizing Sensor Performance

@ Most sensors generates measurements that are contaminated by noise.

e Systematic noise: errors that could be modelled for example through
calibration

e Random noise: errors that cannot be predicted. Typically modelled in a
probabilistic fashion

@ Precision: reproducibility of measurements

range

precision =
o
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Wheel encoder

@ Optical encoders. A disc and a diode. Measurement of discrete values.

Quadrature encoders enable detection of direction of motion.
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Greycoded Encoders

Rotating an 8-bit absolute Gray code disk.

a. Counterclockwise rotation by one position increment will cause
only one bit to change.

b. The same rotation of a binary-coded disk will cause all bits to
change in the particular case (255 to 0) illustrated by the
reference line at 12 o'clock.

[Everett, 1995].
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Orientation and heading

@ Compass used as a reference since 2000 B.C.
@ Today available in solid state technology
@ Sensitive to ferro magnetic materials

@ High environmental variation
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Gyro/Accelerometers

A @ The inertia of a spinning wheel

/_1 \ provides a reference for orientation.

—{ X; B @ Today available in fiber-optic and
.\ .‘ . 177 _ Inner pivot . .
Wheel bearing 7& & Aii ) e SO||d State Versions
' Q;F?%""”““' @ Double integration implies high

noise sensitivity
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Ranging

@ Ranging for estimation of position is a very common methodology. Several
methods are used:

e Time of Flight: Travel time for a pulse
e Phase Difference: Phase of modulation o time of travel
e Triangulation: Simple geometric relations

@ From range measurements position can be estimated
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Time of Flight — Ranging

@ Measures travel time.

@ Speed of propagation ¢, distance d implies

d
d=cxt = t=—

c
@ Travels back and forth so d = <5+

- i

‘ D v

Transmitter v :\_ t
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Phase differencing — Ranging

@ At a distance D the phase
difference is

Amplitude [V]

0 A7 D Phase [m]
_ 0 LA N /|
A
PR Tycmsritied Baii
........ Reflected Beam

@ Estimated using PLL which
is “inexpensive” technology
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Triangulation — Ranging

@ Use simple geometric relations to recover depth

e Example is IR/Laser triangulation

L
D=f-
X
@ Depth inversely proportional to x
Laser/IR
] -
) .
x
I Emitted beam
psDl| V" Reflected light
<«
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Sharp Triangulation Sensors
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Position from Range

@ One of the most common approaches in robotics

@ Consider handling of two range readings

N

y
y
/W\
(X2, ¥5) > x
d
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Position from Range

e Given two range pings di, d>and known positions: (0,0) and (x2, y») the
position of intersection is

x5 + d? — d?
2X2
o 23d2+2d2d3 +253d3 — x¢ — df — df
y - 4 2
X2

@ Trivial to compute intersection point(s)
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Unique position estimates

@ With 34 range estimates the intersection point is unique

@ Noise might contaminate the measurements

Y
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Ultra-sonic ranging

@ Widely used in underwater
for mapping

@ In air the main application
has been cameras

@ Speed of sound ~ 3437 so
processing is “slow”

@ Pulse based time of flight
(49.1 kHz)

@ Cheap technology for mass
products
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Sonar ranging

Transmitted sound "Jﬁuﬂ" )ﬂUﬁ = Vﬂv

o
A7

Analog echo signal
Trashold |- g A A AR,

—————— Fatr A S Ry

- T
Digital echo signal l ”_] ﬂ ﬂ ﬂ ﬂﬂr—g——‘_,_

Integrated time  § |
Output signal
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Sonar sensing — Characteristics

measurement cone

Amplitude [dB]
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Underwater Sonar

Types of underwater imaging sonars
Mechanical (Imagenex) Electronically-scanned (Reson)

Range Scale - Meters
|1e J1a” [z o s
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IR Ranging

@ Short-range triangulation sensor

@ Dependent on surface
color/reflectance

@ Very inexpensive (easy
interfacing)

@ Primarily obstacle detection
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Laser Scanning - Beacon Based
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Laser Scanning - TOF
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Angular distribution /
Known landmarks

Robust to variations

Easy to install

Used in factory settings for
AGV systems

@ More than 15000 units sold

Sensors

Rotating mirror
Pulsed laser
Range 10-50 m
Resolution ~ 1 cm

Sampling rate: 37 Hz

Sensors

37/42
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Laser scanner - SICK

T \{\ ¥ ' e Frequently used sensor
| \\\\‘:‘ e , _ system in the past, not
R
T replaced by many other
?2 i providers
& 3;:2 T ' e Safety classified
: - o @ Unusual error distribution
- o (uniform)
/17

e @ Price: $ 4000
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Modern AMR w. sensors

Wide angle 3D depth

b i +
vision system Laser scanner with 20m
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Compute Processor
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2D LIDAR User interface
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’ ‘ —— Encodersthat
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4m (12f) range
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Summary

@ Introduction to classification of sensors for mobile systems
@ Overview of methods for sensing

@ Brief outline of most typical sensors (ex camera / GPS)
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Global Positioning System
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Global Navigation Satellite System - GNSS

o A family of satellite based systems

GPS Global Positioning System

GLONASS Russian Equivalent of GPS
Galileo EU variation of GPS under construction
BeiDou The Chinese variation of GNSS

@ Background dates back to radio systems used from 1950.

@ GPS is one of the most widely used localization systems today

Henrik | Christensen (UCSD CSE)

@ Introduction

© Position Estimation
© System Overview
@ Space Segment

@ Control Segment
@ User Segment

@ Augmentation

© GPS Data

O WGS

@ Summary

Henrik | Christensen (UCSD CSE)



Triangulation

@ Triangulation discussed earlier is the basis for the design and operation.
@ Formally the method is based on trilateration.

@ Estimation of a point position based on distance to a number of reference
stations. A minimum of 3 references are need to determine a unit point
intersection
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Trilateration

A
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Trilateration

rPo= xX*4y*+27° 1)
7= (x—d)?+y*+ 22 2)
o= (x=)P+y-j)P+2 3)
=
rl2 — r22 + d? (4)
X =
2d
, = r?—r3 4%+ 2 —2ix (5)
2j
z = r2—x2 —y? (6)
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Trilateration

@ Noise results in poor stability
@ In reality many more references are often available

@ Explicit consideration of accuracy and stability required in the design of
system.
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Position Estimation

@ Using time of flight as a way to measure distance

@ The distance is
c X At

d= 5

@ Given speed of light =~ 3x108%

@ Flight times might be 30-100 ms, but differences of 3 meters would be on the
order of 20 ns, which is a challenge but not impossible
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GPS Overview

First complete constellation

Dual use recognized by 199
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GPS Structure

First navigation systems launched around 1962
Space clocks led the way to GPS

First satelite launched for GPS around 1978
Initial capability by Dec 1993

Feb 14, 1994
6

System design based on observation of doppler from Sputnik

SPACE

Station

ey

Uploading

CONTROL

Master
Station

Figure 3.4: The Navstar Global Positioning System consists of three fundamental segments: Space, Control,

and User. (Adapted from [Getting, 1993].)
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Space Segment

@ Composed of 30+ satellites
e Flying at 20,200 km altitude

@ In 6 orbital planes

@ Nominally 4 satellites in each plane
°

Planes have an inclination of 55°
wrt Earth
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Satellites

o 5 different types of satellites are in
use

@ Weight of a satellites in orbit 1080
kg

@ Two different signals are
transmitted continuously
@ Data rate is 50bits/s

@ In addition C/A and P(Y) codes are
transmitted at 1.023 * 10°
chips/sec.
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Control Segment

Control segment is responsible for health monitoring
Correction of space trajectories

Adjustment of clocks (2ns / year)

Responsible for uploads

Monitoring through 5 ground stations

Managed by 50th Space Wing / 2nd Space Command / Schriever Air Force
Base

Henrik | Christensen (UCSD CSE)
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The receivers used by users of all kinds

°

@ An antenna, a multi-channel receiver and a fairly accurate clock
@ In many cases GPS receivers have an embedded navigation model
°

Some GPS units have direct interface to an IMU to allow operation in the
presence of partial occlusion or structural noise

@ Many receivers communicate in a proprietary format and in addition in
NMEA-183 (and some in NMEA 2000) over a serial line (default 4800 baud
8-N-1)
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Navigation Information

@ Satellites transmit a navigation message at 50bits/s
@ The message is 1500 bits long (30 seconds)

e 300 bits - clock, delta, GPS time, health, ...
e 1200 bits - trajectory/orbit data / almanac

@ Trajectories are updated each 2 hour
@ All times are reported in UTC
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Navigation Codes

C/A Course/Acquisition Code - Allow early detection of position of
satellite based on almanac

P(Y) Precise / encrypted code - used primarily by military users
Information sent across 1575.42 and 1227.60 MHz frequencies

Henrik | Christensen (UCSD CSE)

Accuracy

Table 3.4: Summary of achievable position accuracies for various
implementations of GPS.

GPS Implementation Method Position Accuracy
C/A-code stand alone 100 m SEP

(328 ft)
Y-code stand alone 16 m SEP

(52 ft)
Differential (C/A-code) 3 mSEP

(10 ft)
Differential (Y-code) unknown (TBD)
Phase differential (codeless) 1 cm SEP

(0.4 in)
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GPS Error Budget

Segment  Error Source GPS w. SA GPS wo SA
[m] [m]
Space Satellite clock stability 3.0 3.0
Satellite pertubations 1.0 1.0
Selective availability 32.3 -
Other (thermal, ...) 0.5 0.5
Control Ephemeris pred. error 4.2 4.2
Other (truster perf., ...) 0.9 0.9
User Ionospheric delay 5.0 5.0
Tropospheric delay 1.5 1.5
Receiver noise 1.5 1.5
Multipath 2.5 2.5
Other 0.5 0.5
System Total (RMS) 33:3 8.0

SA turned off May 2, 2000 by executive order.
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Augmentation Methods

@ Augmentation methods designed to reduce errors and produce better
accuracy estimates
@ Most frequently used methods
@ Differential GPS (dGPS)
©Q Wide-Area Augmentation Services (WAAS)

© Inertial Navigation System (INS)
© Assisted GPS (A-GPS)
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Differential GPS

@ Uses fixed landmarks and local differentials to correct for errors
@ Initially introduced to compensate for SA

@ Possible options include

o Local Radio Beacon

e US Coast Guard Stations (Maritime Differential GPS)
o National Differential GPS (NDPS)

o Close to 80 stations in operations, goal is 128

Differential networks also in place throughout Canada and Europe
Most stations transmit in the region close to 300 KHz
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Differential GPS Sketch

Real-Time Differential GPS

5 ) —

RTCM Corrections ‘&' D
“rv_{)

Reference Station at
a Known Location
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dGPS Error Budget

Segment  Error Source GPS w. SA LADGPS
[m] [m]
Space Satellite clock stability 3.0 0.0
Satellite pertubations 1.0 0.0
Selective availability 32.3 0.0
Other (thermal, ...) 0.5 0.0
Control Ephemeris pred. error 4.2 0.0
Other (truster perf., ...) 0.9 0.0
User Ionospheric delay 5.0 0.0
Tropospheric delay 1.5 0.0
Receiver noise 1.5 2.1
Multipath 2.5 2.5
Other 0.5 0.5
System Total (RMS) 233.3 3.3
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Wide Area Augmentation Service (WAAS)

@ System developed by FAA for increased GPS accuracy

@ Objective is an increase in accuracy of 5 times

@ WAAS corrections are distributed by satellites (IDs 35-51)
@ Uses 25 Ground Stations

@ Objective GDOP < 7m
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WAAS

GPS Satellites.

- ~ GEO Satellite
_ Wide-area Reference Station (WRS) @ International WRS's N——

(] Wide-area Master Station (WMS) 'y Ground Uplink Station
Y

GEO Satellite

:l -
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Assisted GPS

@ Motivated by Cell Phone 911 usage
@ GPS localisation and Base Station Triangulation
@ Only useful for cell phones w. GPS and GPRS/3G
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NMEA - Data

NMEA - 0183 Standard
Combined serial / electrical standard

ASCII protocol for transmission

RS-232/RS-485/.. serial communication

°
°

°

@ Originally for marine electronics

°

@ Most GPS Units today have a USB / Serial connection
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NMEA

@ Defined as “sentences”
@ Sentences start with a $ and end with cr/If

@ Structure
$GPcmd fieldl,field2,field3hh<cr><If>
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Typical NMEA commands

GGA Fix information

GLL Lat/Lon data

GSA Overall satellite data

GRS GPS Range Residuals

GST GPS Pseudorange Noise Statistics
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Example NMEA Data

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

GGA
123519
4807.038,N
01131.000,E
1

08

0.9

545.4,M
46.9.m
empty
empty

*47

Global Position Fix Data

Data acquired 12:35:19 UTC
Latitude 48 deg 07.038" N
Longitude 11 deg 31.000' E
Fix Quality (O=invalid .. 2=dGPS)
#satellites tracked

HDOP

Altitude in m above sea level
Height above WGS-84 ellipsoid
Time since dGPS update
dGPS station ID

Checksum of message

Henrik | Christensen (UCSD CSE)
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World Geodetic System (WGS)

Defines a reference frame for the earth
Derived from an elliptical model of earth
Required to perform accurate surveying
Ellipsoid (WGS-84)

Semi-major axis 6,378,137 m

Semi-minor axis 6,356,752.314245 m
Inverse flattening 298.257223563
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GPS Models

e LAT/LONG - position on the globe
@ UTM - Universal Traverse Mercator

@ Local grids adopted to particular regions are common

o Most GPS units have at least 30 different models
o Careful selection is important
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UTM coordinate frame
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Overview of GPS system
One of 3 major GNSS systems

Introduction to the basic principle

Typical error sources
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@ The segmentation of the system
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@ Strategies to compensate for errors
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Data formats and reference models
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