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Cameras, Images and Image Processing

Cameras

Cameras The processing chain



The pinhole camera model The Pin-Hole Model
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5 Degrees of Freedom !

Camera Calibration

You have serious distortion on the RB5  

OpenCV (opencv-python) has tools for calibration 

https://opencv-python-tutroals.readthedocs.io/en/latest/
py_tutorials/py_calib3d/py_calibration/py_calibration.html
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The Basic Process

• Geometric Correction - Alignment to a calibration model

• Signal Processing - Clean up of data and signal conditioning

• Feature Extraction - Data compression and signal separation

• Estimation - Model, Space and Time Integration for estimation of key 

parameters

• Classification/Categorization - Assignment of one of N classes to data

Sensor Geometric 
Correction

Signal 
Process

Feature  
Extraction

Estimation 
&  

Classification

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html
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Geometric Correction

• Typically warping of signal to remove distortions
416 Image Processing
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Figure 12.37: Coordinate notation for image warping. The pixel (u′,v′) in the output image
is sourced from the pixel at (u,v) in the input image as indicated by the arrow. The warped
image is not necessarily polygonal, nor entirely within the second image.
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Figure 12.38: Warping to undistort an image, (a) original distorted image; (b) corrected
image. Note that the top edge of the target has become a straight lines. Example from
Bouget’s Camera Calibration Toolbox, image number 18.

Finally we will revisit the lens distortion example from Section 11.1.1. The dis-
torted image from the camera is the input image and will be warped to remove the
distortion. We are in luck since the distortion model (11.13) is already in the inverse
form. Recall that

ud = u+ δu

vd = v+ δv

where δu and δv are functions of (u,v).

First we load the distorted image and build the coordinate matrices for the distorted
and undistorted images

>> distorted = iread(’Image18.tif’, ’double’);

>> [Ui,Vi] = imeshgrid(distorted);

>> Uo = Ui; Vo = Vi;

and then load the results of the camera calibration
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Figure 12.38: Warping to undistort an image, (a) original distorted image; (b) corrected
image. Note that the top edge of the target has become a straight lines. Example from
Bouget’s Camera Calibration Toolbox, image number 18.

Finally we will revisit the lens distortion example from Section 11.1.1. The dis-
torted image from the camera is the input image and will be warped to remove the
distortion. We are in luck since the distortion model (11.13) is already in the inverse
form. Recall that

ud = u+ δu

vd = v+ δv

where δu and δv are functions of (u,v).

First we load the distorted image and build the coordinate matrices for the distorted
and undistorted images

>> distorted = iread(’Image18.tif’, ’double’);

>> [Ui,Vi] = imeshgrid(distorted);

>> Uo = Ui; Vo = Vi;

and then load the results of the camera calibration
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Signal enhancement12.2 Monadic operations 375
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Figure 12.7: Some monadic image operations, (a) original, (b) shadow regions, (c) histogram
normalized, (d) posterization,

where we have selected certain pixels based just on their brightness.

Sometimes an image does not span the full range of available grey levels, for ex-
ample an underexposed image will have no pixels with high values while an over-
exposed image will have no low values. We can apply a linear mapping to the
greyscale values

>> im = istretch(street);

which ensures that pixel values span the full range6 which is either [0,1] or [0, 255]
depending on the class of the image.

A more sophisticated version is histogram normalization or histogram equalization

>> im = inormhist(street);

which is shown in Figure 12.7(c) and ensures that the cumulative distribution of
pixel intensities is linear. We see that the grey levels in the shadow region have been
raised and stretched out making the details in the shadowed area more visible. The
cumulative histogram of the pixel values can be plotted using

>> ihist(street, ’cdf’);

The cumulative distributions of the image before and after normalization are shown
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Spatial operations

380 Image Processing
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Figure 12.10: Example of image sequence analysis for the INRIA LeftBag image sequence
at frame 250. (a) the current image; (b) the estimated background image; (c) the difference
between the current and estimated background images where white is zero, red and blue are
negative and positive values respectively and magnitude is indicated by color intensity (movie
from the collection of the EC Funded CAVIAR project/IST 2001 37540).

the input image

OOO[u,v] = f
(

III[u+ i,v+ j]
)

,∀(i, j) ∈W, ∀(u,v) ∈ III.

where W is known as the window, typically a w×w square region with odd side
length w = 2h+ 1 where h ∈ Z+ is the half-width. In Figure 12.11 the window in-
cludes all pixels in the red shaded region. Spatial operations are powerful because of
the variety of possible functions f (·), linear or non-linear, that can be applied. The
remainder of this section discusses linear spatial operators such as smoothing and
edge detection, and some non-linear functions such as rank filtering and template
matching. The following section covers a large and important class of non-linear
spatial operators known as mathematical morphology.
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Figure 12.11: Spatial image processing operations. The red shaded region shows the window
W that is the set of pixels used to compute the output pixel (show in red).
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Filtering

Noise removal 

Edge detection 

Texture description 

Multi-scale algorithms 

Feature detection 

Matched filters
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Spatial convolutions

380 Image Processing
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Figure 12.10: Example of image sequence analysis for the INRIA LeftBag image sequence
at frame 250. (a) the current image; (b) the estimated background image; (c) the difference
between the current and estimated background images where white is zero, red and blue are
negative and positive values respectively and magnitude is indicated by color intensity (movie
from the collection of the EC Funded CAVIAR project/IST 2001 37540).

the input image

OOO[u,v] = f
(

III[u+ i,v+ j]
)

,∀(i, j) ∈W, ∀(u,v) ∈ III.

where W is known as the window, typically a w×w square region with odd side
length w = 2h+ 1 where h ∈ Z+ is the half-width. In Figure 12.11 the window in-
cludes all pixels in the red shaded region. Spatial operations are powerful because of
the variety of possible functions f (·), linear or non-linear, that can be applied. The
remainder of this section discusses linear spatial operators such as smoothing and
edge detection, and some non-linear functions such as rank filtering and template
matching. The following section covers a large and important class of non-linear
spatial operators known as mathematical morphology.
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Figure 12.11: Spatial image processing operations. The red shaded region shows the window
W that is the set of pixels used to compute the output pixel (show in red).
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What is Image Filtering?

Modify the pixels in an image based on some 
function of a local neighborhood of the pixels

10 5 3

4 5 1

1 1 7

7
Some function

Linear Filtering

Linear case is simplest and most useful 
Replace each pixel with a linear combination of its neighbors. 

Prescription for linear combination is called the convolution 
kernel.  
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1 1 7

7*
0 0 0
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0 1.0 0.5
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kernel

Filtering Examples



Filtering Examples: Identity Filtering Examples

Filtering Examples: Blur Filtering Examples



Filtering Examples: Shift
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Convolutions to enhance images

12.4 Spatial operations 381

12.4.1 Convolution

A very important linear spatial operator is convolution

O[u,v] = ∑
(i, j)∈W

III[u+ i,v+ j]KKK[i, j],∀(u,v) ∈ I

where KKK ∈Rw×w is the convolution kernel. For every output pixel the corresponding
window of pixels from the input image W is multiplied element-wise with the kernel
KKK. The centre of the window and kernel is considered to be coordinate (0,0) and
i, j ∈ [−h, h]. This can be considered as the weighted sum of pixels within the
window where the weights are defined by the kernel KKK. As we will see convolution
is the workhorse of image processing and the kernel KKK can be chosen to perform
functions such as smoothing, gradient calculation or edge detection. Convolution is
often written in operator form as

O = KKK ⊗ I

Convolution is computationally expensive — an N ×N input image with a w×w

kernel requires w2N2 multiplication and additions. In the Toolbox convolution is
performed using the function iconv

>> O = iconv(K, I);

If I has multiple color planes then so will the output image — each output color
plane is the convolution of the corresponding input plane with the kernel K.

12.4.1.1 Smoothing

Consider a kernel which is a square matrix containing all ones

Properties of convolution. Convolution obeys the familiar rules of algebra, it is commutative

A⊗B = B⊗A

associative

A⊗B⊗C = (A⊗B)⊗C = A⊗ (B⊗C)

distributive (superposition applies)

A⊗ (B+C) = A⊗B+A⊗C

linear

A⊗ (αB) = α(A⊗B)

and shift invariant — if S(·) is a spatial shift then

A⊗S(B) = S(A⊗B)

that is, convolution with a shifted image is the same as shifting the result of the convolution with the
unshifted image.
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Smoothing Example
382 Image Processing
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Figure 12.12: Smoothing. (a) original image; (b) smoothed with a 21×21 averaging kernel;
(c) smoothed with a 31×31 Gaussian G(σ = 5) kernel.

>> K = ones(21,21) / 21ˆ2;

and of unit volume, that is, its values sum to one. The result of convolving an image
with this kernel is an image where each output pixel is the mean of the pixels in a
corresponding 21×21 neighbourhood in the input image. As you might expect this
averaging

>> lena = iread(’lena.pgm’, ’double’);

>> idisp( iconv(K, lena) );

leads to smoothing, blurring or defocus8 which we see in Figure 12.12(b). Look-
ing very carefully we will see some faint horizontal and vertical lines — an artefact
known as ringing. A more suitable kernel for smoothing is the 2-dimensional Gaus-

The lena image became something of a standard for image processing research
in the 1970s. It was digitized by image compression researchers at the Uni-
versity of Southern California Signal and Image Processing Institute (SIPI) in
1973 from a November 1972 Playboy centerfold. The model is Lena Soder-
berg (nee Sjööblom) who lives in Sweden. She is reported to be amused by
this use of her picture and attended an imaging conference in 1997. See also
http://www.lenna.org.
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A few typical kernels
384 Image Processing
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Figure 12.13: Gallery of commonly used convolution kernels. h = 15, σ = 5.

as shown in Figure 12.13(c). The arguments specify a radius of 8 pixels within a
window of half width h = 15.

12.4.1.2 Boundary effects

A difficulty with convolution occurs when the window is close to the edge of the
input image as shown in Figure 12.14. In this case the output pixel is a function
of a window that contains pixels beyond the edge of the input image. There are
several common remedies to this problem. Firstly, we can assume the pixels beyond

Properties of the Gaussian. The Gaussian function has some special properties. The convolution of
two Gaussians is another Gaussian

G(σ1)⊗G(σ2) = G

(√

σ2
1 +σ2

2

)

For the case where σ1 = σ2 = σ then

G(σ)⊗G(σ) = G
(√

2σ
)

The 2-dimensional Gaussian is separable — it can be written as the product of two 1-dimensional Gaus-
sians

G(u,v) =
1√
2πσ

e
− u2

2σ2 ×
1√
2πσ

e
− v2

2σ2

This implies that convolution with a 2-dimensional Gaussian can be computed by convolving each row
with a 1-dimensional Gaussian, and then each column. The total number of operations is reduced to
2wN2, better by a factor of w. A Gaussian also has the same shape in the spatial and frequency domains.
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Convolution

Represent these weights as an image, H 
H is usually called the kernel 
Operation is called convolution

€ 

Rij = Hi−u, j−vFuv
u,v
∑

Example: Smoothing by Averaging

Smoothing with a Gaussian

Averaging does not model defocussed lens well 
impulse response should be fuzzy blob

The picture shows a smoothing kernel proportional to             

	reasonable model of a circularly symmetric blob
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An Isotropic Gaussian



Smoothing with a Gaussian Filter responses are correlated

Correlated over scales similar to scale of filter 

Filtered noise is sometimes useful 
looks like some natural textures, can be used to simulate 
fire, etc.

sigma=1 sigma=16



The effects of smoothing Edge Detection

Sobel Kernel (Corke Chapter 12)

Magnitude 
& direction

|DoG| vs. Canny
Derivative of Gaussian operator, then take magnitude

Canny: smart post-
processing of edge 
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Template matching

• In some cases it is entirely possible to match signals to templates

• The template could be sub-images, or processed versions of an arbitrary 

signal

394 Image Processing

Sum of absolute differences

SAD s = ∑(u,v)∈I

∣
∣
∣III1[u,v]− III2[u,v]

∣
∣
∣ sad
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∣
∣(III1[u,v]− III1)− (III2[u,v]− III2)

∣
∣
∣ zsad

Sum of squared differences

SSD s = ∑(u,v)∈I

(

III1[u,v]− III2[u,v]
)2

ssd

ZSSD s = ∑(u,v)∈I

(

(III1[u,v]− III1)− (III2[u,v]− III2)
)2

zssd

Cross correlation

NCC s =
∑(u,v)∈I III1[u,v]·III2[u,v]

√

∑(u,v)∈I III2
1[u,v]·∑(u,v)∈I III2

2[u,v]
ncc

ZNCC s =
∑(u,v)∈I(III1[u,v]−III1)·(III2[u,v]−III2)

√

∑(u,v)∈I(III1[u,v]−III1)2·∑(u,v)∈I(III2[u,v]−III2)2
zncc

Table 12.1: Similarity measures for two equal-sized image regions I1 and I2. The Z-prefix
indicates that the measure accounts for zero-offset or the difference in mean of the two images
[18]. Toolbox functions are indicated in the last column.

where T is the w×w template, the pattern of pixels we are looking for, with odd
side length w = 2h+ 1, and W is the w×w window centred at (u,v) in the input
image. The function s(I1,I2) is a scalar measure that describes the similarity of two
equally sized images I1 and I2.

A number of common similarity measures10 are given in Table 12.1. The most
intuitive similarity measures are computed simply by computing the pixel-wise dif-
ference TTT −W and taking the sum of the absolute differences (SAD) or the sum
of the squared differences (SSD). These metrics are zero if the images are identical
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Figure 12.20: Spatial image processing operations. The red shaded region shows the window
W that is the set of pixels used to compute the output pixel (show in red).
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Typical performance metrics
394 Image Processing
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Table 12.1: Similarity measures for two equal-sized image regions I1 and I2. The Z-prefix
indicates that the measure accounts for zero-offset or the difference in mean of the two images
[18]. Toolbox functions are indicated in the last column.

where T is the w×w template, the pattern of pixels we are looking for, with odd
side length w = 2h+ 1, and W is the w×w window centred at (u,v) in the input
image. The function s(I1,I2) is a scalar measure that describes the similarity of two
equally sized images I1 and I2.

A number of common similarity measures10 are given in Table 12.1. The most
intuitive similarity measures are computed simply by computing the pixel-wise dif-
ference TTT −W and taking the sum of the absolute differences (SAD) or the sum
of the squared differences (SSD). These metrics are zero if the images are identical
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Figure 12.20: Spatial image processing operations. The red shaded region shows the window
W that is the set of pixels used to compute the output pixel (show in red).

Draft of December 31, 2010, Brisbane Copyright (c) Peter Corke 2010

(c) Henrik I Christensen

Where is waldo?396 Image Processing
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Figure 12.21: Image from the children’s book “Where’s Wally”. (a) the image of a crowd
containing Wally; (b) a template of Wally (21× 25) extracted from another image and very
approximately scaled.

ans =

0.9990

all measures indicate a degree of disimilarity. The problematic offset can be dealt
with by first subtracting from each of T and W their mean value

>> zsad(T, T+0.1)

ans =

1.7300e-11

>> zssd(T, T+0.1)

ans =

1.1507e-25

>> zncc(T, T+0.1)

ans =

1.0000

and these measures indicate a high degree of similarity. The z-prefix denotes vari-
ants of the similarity measures described above that are invariant to intensity offset.
Only the ZNCC measure

>> zncc(T, T*0.9+0.1)

ans =

1.0000

is invariant to both gain and offset variation. All these methods will fail if the images
have even a small change in relative rotation or scale.

Consider the images shown in Figure 12.21 from the well known children’s book
“Where’s Wally” or “Where’s Waldo” — the fun is trying to find Wally’s face in
a crowd such as shown in Figure 12.21(a). Fortunately we know roughly what he
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Figure 12.22: Similarity image S with top five Wally candidates marked. The color bar
indicate the similarity scale. Note the border of indeterminate values where the template
window falls off the edge of the input image.

looks like as shown in Figure 12.21(b). We start by loading a greyscale crowd scene
>> crowd = iread(’wheres-wally.png’, ’double’);

and the template

>> T = iread(’wally.png’, ’double’);

which was extracted from a different image and scaled so that the head is approxi-
mately the same width as other heads in the crowd scene (around 21pixels wide).

The similarity of our template T to every possible window location is computed by
>> S = isimilarity(T, crowd, @zncc);

using the matching measure ZNCC. The result
>> idisp(S, ’colormap’, ’jet’, ’bar’)

is shown in Figure 12.22 and the pixel color indicates the ZNCC similarity as indi-
cated by the color bar. We can see a number of spots of high similarity (red) which
are candidate positions for Wally. The peak values, with respect to a local 3× 3
window, are

>> [p,mx] = peak2(S, 1, 5);

>> mx

mx =

0.5258

0.5230

0.5222

0.5032

0.5023
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Figure 12.23: Top five Wally candidates marked on the original scene with a blue disk.
Numbers correspond to decreasing similarity

in descending order. The second argument specifies the window half-width h = 1
and the third argument specifies the number of features to return. The largest value
0.5258 is the similarity of the strongest match found. These matches occur at the
coordinates (u, v) given by the first return value p and we can highlight these points
on the scene

>> idisp(crowd);

>> plot_circle(p, 30, ’fillcolor’, ’b’, ’alpha’, 0.3, ’edgecolor’, ’none’)

>> plot_point(p, ’sequence’, ’bold’, ’textsize’, 24, ’textcolor’, ’k’)

using transparent blue circles that are numbered sequentially as shown in Figure
12.23. The best match at (261, 377) is in fact the correct answer — we found
Wally! It is interesting to look at the other highly ranked candidates. Numbers two
and three at the bottom of the image are people also wearing baseball caps who look
quite similar.

There are some important points to note from this example. The images have quite
low resolution and the template shown in Figure 12.21(b) is only 21× 25 — it
is a very crude likeness to Wally. The match is not a strong one — only 0.5258
compared to the maximum possible value of 1.0 and there are several contributing
factors. The matching measure is not invariant to scale, that is, as the relative scale
(zoom) changes the similarity score falls quite quickly. In practice perhaps a 10–
20% change in scale between T and W can be tolerated. For this example the
template was only approximately scaled. Secondly, not all Wallys are the same.
Wally in the template is facing forward but the Wally we found in the image is
looking to our left. Another problem is that the square template typically includes
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Feature Extraction
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Figure 13.1: Examples of pixel classification. The left-hand column is the input image
and the right-hand column is the classification. The classification is application specific and
the pixels have been classified as either object (white) or not-object (black). The objects of
interest are (a) the individual letters on the sign; (b) the yellow targets; (c) the red tomatoes.
(d) is a multi-level segmentation where pixels have been assigned to 28 classes that represent
locally homogeneous groups of pixels in the scene.
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Figure 13.1: Examples of pixel classification. The left-hand column is the input image
and the right-hand column is the classification. The classification is application specific and
the pixels have been classified as either object (white) or not-object (black). The objects of
interest are (a) the individual letters on the sign; (b) the yellow targets; (c) the red tomatoes.
(d) is a multi-level segmentation where pixels have been assigned to 28 classes that represent
locally homogeneous groups of pixels in the scene.
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Simple object detection

Introduction Image Segmentation Feature Description Recognition Summary

Example Thresholding

Henrik I Christensen (RIM@GT) Image Analysis 9 / 32

(c) Henrik I Christensen

If only life was that simple

Introduction Image Segmentation Feature Description Recognition Summary

If life was that easy?

Henrik I Christensen (RIM@GT) Image Analysis 11 / 32

(c) Henrik I Christensen

Adaptive thresholding
Introduction Image Segmentation Feature Description Recognition Summary

Adaptive thresholding

Original 7x7 mask 140x140 mask
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Feature extraction

• Broad set of possible features depending on sensor modality

• Point Estimation

• Line Estimation (mathematical vs finite lines)

• Place Estimation

• Geometric features (#holes, shape descriptors)

• Statistical Features (typical moments, central moments, ...)

• Basic geometry

(c) Henrik I Christensen

Line Estimation
Introduction Detection/Estimation Sonar Features Line Features Summary References

Line Estimation

Lines are a predominant feature in engineered environments

There is an abundance of methods for line estimation

LSQ, Split-Merge, Hough, EM-estimation,

RANSAC is frequently used (Fischler & Bolles, 1981)

Henrik I Christensen (RIM@GT) Features 9 / 41
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Voting based methods

Introduction Detection/Estimation Sonar Features Line Features Summary References

Voting based estimators

Voting provides a simple estimator for detection

Voting requires:
1 A Voting Space
2 A voting function (structure function)
3 A decision function (often local extrema)

Hough (1962) is one of the most widely used. Can also be used for
lines and other shapes (Ballard, 1981)

Henrik I Christensen (RIM@GT) Features 10 / 41
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Hough based estimator
Introduction Detection/Estimation Sonar Features Line Features Summary References

The Hough Transform

ρ θ

x

y
Line model:
⇢ = x ⇤ cos(✓) + y ⇤ sin(✓)

Voting space: [✓, ⇢]

Voter: traverse ✓ space

Local maximum w. NMS

for all points in (x,y)
for each ✓ : 0 ! ⇡

calc ⇢ and increment (✓, ⇢)

Generates infinite lines.
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Basic Hough Example

Introduction Detection/Estimation Sonar Features Line Features Summary References

Hough Example

Henrik I Christensen (RIM@GT) Features 12 / 41
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Hough on polar / range - bearing data

Introduction Detection/Estimation Sonar Features Line Features Summary References

Hough on Lasers

Scanning is in polar
coordinates.

The density of points is
varying.

Close structure will
accumulate more points.

Range weighting can
compensate. Proposed by
Forsberg et al. (1993).
Weight by 1

cos( i�✓)

Henrik I Christensen (RIM@GT) Features 13 / 41
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The approach for visual navigation

• Need to detect robust features for objects (we will discuss more next two 
sessions)


• Tracking of features over time to “keep” features in view


• Control vehicle to achieve the task objective 

Sensor Geometric 
Correction

Feature 
Extraction Tracking Servoing &  

Control

(c) Henrik I Christensen

RANSAC - Random Sampling Consensus
Introduction Detection/Estimation Sonar Features Line Features Summary References

RANSAC - Random Sampling Consensus

Estimation of parameters
from N data items

There are M data point in
total

How do we find the best
parameters when there
are many outliers?

Henrik I Christensen (RIM@GT) Features 14 / 41
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RANSAC - Algorithm
Introduction Detection/Estimation Sonar Features Line Features Summary References

RANSAC - Random Sampling Consensus

1 selects N data items at random

2 estimates parameter ~x

3 finds how many data items (of M) fit the model with parameter
vector ~x within a user given tolerance. Call this K.

4 if K is big enough, accept fit and exit with success.

5 repeat 1..4 L times

6 fail if you get here

Henrik I Christensen (RIM@GT) Features 15 / 41
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RANSAC Example Result

Introduction Detection/Estimation Sonar Features Line Features Summary References

RANSAC - Example Result

Henrik I Christensen (RIM@GT) Features 16 / 41
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LSQ line fitting

Introduction Detection/Estimation Sonar Features Line Features Summary References

Line Estimation

Least square minimization:
Line equation: y = ax + b
Error in fit:

P
i
(yi � axi � b)2

Solution: ✓
ȳ2

ȳ

◆
=

✓
x̄2 x̄
x̄ 1

◆ ✓
a
b

◆

Minimizes vertical errors. Non-robust!

Henrik I Christensen (RIM@GT) Features 17 / 41
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TLS line fitting

Introduction Detection/Estimation Sonar Features Line Features Summary References

Total Least Squares

Line equation: ax + by + c = 0

Error in fit:
P

i
(axi + byi + c)2 where a2 + b2 = 1.

Solution:
✓

x̄2 � x̄ x̄ x̄y � x̄ ȳ
x̄y � x̄ ȳ ȳ2 � ȳ ȳ

◆ ✓
a
b

◆
= µ

✓
a
b

◆

where µ is a scale factor.

c = �ax̄ � bȳ
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Summary

• Starting to think about images as a primary modality for feedback

• The main sensor for CSE276A homework

• There are much more to image processing than we can cover. The book 

(Corke, 2023) covers much more material

• Most of the processing covered by the OpenCV library - https://opencv.org/


