Cameras, Images and Image Processing

(c) Henrik I Christensen

Cameras

- Most flexible sensory modality
- Complex sensory processing
- Not discussed in any detail
- Offers wide range
- Diverse tasking of sensor
- Relatively inexpensive
- Computationally demanding

The Pin-Hole Model

• The relations are then:

 $\begin{array}{rcl} \frac{x}{\lambda} & = & \frac{X}{Z} \\ \frac{y}{\lambda} & = & \frac{Y}{Z} \\ & \Rightarrow \\ x & = & \frac{\lambda X}{Z} \\ y & = & \frac{\lambda Y}{Z} \end{array}$

Defocus example

• Local sharpness: $LS = \sum_{x,y} |I(x,y) - I(x-1,y)|$

Structured light

- Segmentation of images is a "hard" problem
- Active illumination simplifies the problem
- In particular in industrial inspection

Images

- Images are basically a 2D array of intensity/color values
- Image types

Color

Grayscale

Images

- Matrix of values
- The picture element is named a pixel

- You have serious distortion on the RB5
- OpenCV (opencv-python) has tools for calibration
- <u>https://opencv-python-tutroals.readthedocs.io/en/latest/</u> py_tutorials/py_calib3d/py_calibration/py_calibration.html

- Estimation Model, Space and Time Integration for estimation of key parameters
- Classification/Categorization Assignment of one of N classes to data

Signal enhancement

Filtering

- Noise removal
- Edge detection
- Texture description
- Multi-scale algorithms
- Feature detection
- Matched filters

What is Image Filtering?

Modify the pixels in an image based on some function of a local neighborhood of the pixels

Linear Filtering

- Linear case is simplest and most useful
 - Replace each pixel with a linear combination of its neighbors.
- Prescription for linear combination is called the convolution kernel.

A few typical kernels

Convolution

- Represent these weights as an image, H
- H is usually called the **kernel**
- Operation is called convolution

 $R_{ij} = \sum_{u,v} H_{i-u,j-v} F_{uv}$

Smoothing with a Gaussian

- Averaging does not model defocussed lens well
- impulse response should be fuzzy blob

An Isotropic Gaussian

• The picture shows a smoothing kernel proportional to

• reasonable model of a circularly symmetric blob

Filter responses are correlated

- Correlated over scales similar to scale of filter
- Filtered noise is sometimes useful
 - looks like some natural textures, can be used to simulate fire, etc.

Template matching

- In some cases it is entirely possible to match signals to templates
- The template could be sub-images, or processed versions of an arbitrary signal

Feature extraction

- Broad set of possible features depending on sensor modality
 - Point Estimation
 - Line Estimation (mathematical vs finite lines)
 - Place Estimation
 - · Geometric features (#holes, shape descriptors)
 - Statistical Features (typical moments, central moments, ...)
 - Basic geometry

Line Estimation

• Lines are a predominant feature in engineered environments

(c) Henrik I

- There is an abundance of methods for line estimation
- LSQ, Split-Merge, Hough, EM-estimation,
- RANSAC is frequently used (Fischler & Bolles, 1981)

- Need to detect robust features for objects (we will discuss more next two sessions)
- · Tracking of features over time to "keep" features in view
- · Control vehicle to achieve the task objective

RANSAC - Algorithm

- selects N data items at random
- **2** estimates parameter \vec{x}
- finds how many data items (of M) fit the model with parameter vector \vec{x} within a user given tolerance. Call this K.
- if K is big enough, accept fit and exit with success.
- In the second second
- fail if you get here

(c) Henrik I Christensen

TLS line fitting • Line equation: ax + by + c = 0• Error in fit: $\sum_{i} (ax_{i} + by_{i} + c)^{2}$ where $a^{2} + b^{2} = 1$. • Solution: $\begin{pmatrix} \bar{x^{2}} - \bar{x}\bar{x} & \bar{x}\bar{y} - \bar{x}\bar{y} \\ \bar{x}\bar{y} - \bar{x}\bar{y} & \bar{y^{2}} - \bar{y}\bar{y} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \mu \begin{pmatrix} a \\ b \end{pmatrix}$ where μ is a scale factor. • $c = -a\bar{x} - b\bar{y}$

Robotics@G

Robotics

Summary

- Starting to think about images as a primary modality for feedback
- The main sensor for CSE276A homework
- There are much more to image processing than we can cover. The book (Corke, 2023) covers much more material
- Most of the processing covered by the OpenCV library https://opencv.org/