Cameras, Images and Image Processing

Cameras

- Most flexible sensory modality
- Complex sensory processing
- Not discussed in any detail
- Offers wide range
- Diverse tasking of sensor
- Relatively inexpensive
- Computationally demanding

Cameras

The processing chain

The pinhole camera model

In homogenous coordinates

- Remember Homogeneous Coordinates?

$$
\vec{P}=\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Define the Perspective transform as

$$
\mathbf{T}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{\lambda} & 0
\end{array}\right]
$$

The Pin-Hole Model

- The relations are then:

$$
\begin{aligned}
\frac{x}{\lambda} & =\frac{X}{Z} \\
\frac{y}{\lambda} & =\frac{Y}{Z} \\
& \Rightarrow \\
x & =\frac{\lambda X}{Z} \\
y & =\frac{\lambda Y}{Z}
\end{aligned}
$$

Depth from defocus

- Basic geometry: $\frac{1}{f}=\frac{1}{d}+\frac{1}{e}$
- The smear is proportional to distance

$$
R=\frac{L \delta}{2 e}
$$

Defocus example

- Local sharpness: $L S=\sum_{x, y}|I(x, y)-I(x-1, y)|$

Images

- Images are basically a 2 D array of intensity/color values
- Image types

Color

Grayscale

B-W

Structured light

- Segmentation of images is a "hard" problem
- Active illumination simplifies the problem
- In particular in industrial inspection

Images

- Matrix of values
- The picture element is named a pixel

Camera Calibration

e You have serious distortion on the RB5

- OpenCV (opencv-python) has tools for calibration
e https://opencv-python-tutroals.readthedocs.io/en/latest/ py tutorials/py calib3d/py calibration/py calibration.html

Intrinsic Calibration

3×3 Calibration Matrix K

$$
m=\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=K\left[\begin{array}{ll}
I & 0
\end{array}\right] M=\left[\begin{array}{lll}
\alpha \bigcirc & u_{0} \\
\beta & v_{0}
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
\\
\\
\end{array}\right]
$$

Recover image (Euclidean) coordinates by normalizing :
$\hat{u}=\frac{u}{w}=\frac{\alpha X+s Y+u_{0}}{Z}$

$\hat{v}=\frac{v}{w}=\frac{\beta Y+v_{0}}{Z}$

$$
5 \text { Degrees of Freedom! }
$$

The Basic Process

- Geometric Correction - Alignment to a calibration model
- Signal Processing - Clean up of data and signal conditioning
- Feature Extraction - Data compression and signal separation
- Estimation - Model, Space and Time Integration for estimation of key parameters
- Classification/Categorization - Assignment of one of N classes to data

Geometric Correction

- Typically warping of signal to remove distortions

(a)

(b)

Spatial operations

(a)

(b)

(c)

Signal enhancement

Filtering

© Noise removal

- Edge detection
e Texture description
- Multi-scale algorithms
- Feature detection
- Matched filters

Spatial convolutions

Filtering Examples

original

$$
\begin{aligned}
& \text { Pixel }{ }^{0} \text { offset }
\end{aligned}
$$

?

都

Filtering Examples: Identity

original

Pixel offset

Filtered (no change)

Filtering Examples: Blur

original

Blurred (filter applied in both dimensions).

Filtering Examples

original

Pixel ${ }^{0}$ offset

Filtering Examples

?

Filtering Examples: Shift

Convolutions to enhance images

Properties of convolution. Convolution obeys the familiar rules of algebra, it is commutative

$$
A \otimes B=B \otimes A
$$

associative
$A \otimes B \otimes C=(A \otimes B) \otimes C=A \otimes(B \otimes C)$
distributive (superposition applies)
$A \otimes(B+C)=A \otimes B+A \otimes C$
linear

$$
A \otimes(\alpha B)=\alpha(A \otimes B)
$$

and shift invariant - if $S(\cdot)$ is a spatial shift then

$$
A \otimes S(B)=S(A \otimes B)
$$

that is, convolution with a shifted image is the same as shifting the result of the convolution with the unshifted image.

A few typical kernels

Convolution

- Represent these weights as an image, H
© H is usually called the kernel
- Operation is called convolution

$$
R_{i j}=\sum_{u, v} H_{i-u, j-v} F_{w}
$$

Example: Smoothing by Averaging

Smoothing with a Gaussian

- Averaging does not model defocussed lens well
- impulse response should be fuzzy blob

An Isotropic Gaussian
e The picture shows a smoothing kernel proportional to

$$
\exp \left(-\left(\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right)\right)
$$

e reasonable model of a circularly symmetric blob

Smoothing with a Gaussian

Filter responses are correlated
e Correlated over scales similar to scale of filter

- Filtered noise is sometimes useful
- looks like some natural textures, can be used to simulate fire, etc.

The effects of smoothing

Edge Detection

? Sobel Kernel (Corke Chapter 12)

Magnitude
\& direction

Template matching

- In some cases it is entirely possible to match signals to templates
- The template could be sub-images, or processed versions of an arbitrary signal

? Canny: smart postprocessing of edge

|DoG| vs. Canny

? Derivative of Gaussian operator, then take magnitude
>> $\mathrm{Iu}=$ iconv(castle, - -kdgauss (2) $)$);
>> Iv $=$ iconv(castle. - -kdaauss (2)
$\gg m=\operatorname{sqrt}(I u . \wedge 2+I v . \wedge 2)$;

$$
\mathrm{G}_{u}(u, v)=-\frac{u}{2 \pi \sigma^{2}} e^{\frac{u^{2}+v^{2}}{2 \sigma^{2}}}
$$

\gg Iv $=$ iconv(castle. - -kdauauss (2) ${ }^{\prime}$.;
$\gg \mathrm{m}=\operatorname{sqrt}\left(\mathrm{Iu} . \wedge 2+I v, \wedge_{2}\right) ;$

Typical performance metrics

Sum of absolute differences			
SAD	$s=\sum_{(u, v) \in \mathbf{I}} \mid \boldsymbol{I}$	$\boldsymbol{I} \boldsymbol{I}_{1}[u, v]-\boldsymbol{I}_{2}[u, v] \mid$	sad
ZSAD	$s=\sum_{(u, v) \in \mathbf{I}}$	$\left\|\left(\boldsymbol{I}_{1}[u, v]-\overline{\boldsymbol{I}}_{1}\right)-\left(\boldsymbol{I}_{2}[u, v]-\overline{\boldsymbol{I}}_{2}\right)\right\|$	zsad
Sum of squared differences			
SSD	$s=\sum_{(u, v) \in \mathbf{I}}$	$\left(\boldsymbol{I}_{1}[u, v]-\boldsymbol{I}_{2}[u, v]\right)^{2}$	ssd
ZSSD	$s=\sum_{(u, v) \in \mathbf{I}}$	$\left(\left(\boldsymbol{I}_{1}[u, v]-\overline{\boldsymbol{I}}_{1}\right)-\left(\boldsymbol{I}_{2}[u, v]-\overline{\boldsymbol{I}}_{2}\right)\right)^{2}$	zssd
Cross correlation			
NCC	$s=\frac{\sum_{(u, v) \in \mathbf{I}} \boldsymbol{I}_{1}[u, v,] \cdot \boldsymbol{I}_{2}[u, v]}{\sqrt{\text { a }} \text {, }}$		ncc
	$\sqrt{\sum_{(u, v) \in I} I_{1}^{2}} \sum_{(u, v)}$	$\boldsymbol{I}_{1}^{2}[u, v] \cdot \sum_{(u, v) \in \mathbf{I}} \boldsymbol{I}_{2}^{2}[u, v]$ $v_{v) \in \boldsymbol{I}}\left(\boldsymbol{I}_{1}[u, v]-\overline{\boldsymbol{I}}_{1}\right) \cdot\left(\boldsymbol{\boldsymbol { I } _ { 2 }}[u, v]-\overline{\boldsymbol{I}}_{2}\right)$	
ZNCC	$s=\frac{x^{\text {a }}}{\sqrt{\sum_{(u, v) \in I^{(I)}}}}$		zncc

Where is waldo?

(a)

(b)

Where is Waldo?

If only life was that simple

Adaptive thresholding

Original

7x7 mask

Feature extraction

- Broad set of possible features depending on sensor modality
- Point Estimation
- Line Estimation (mathematical vs finite lines)
- Place Estimation
- Geometric features (\#holes, shape descriptors)
- Statistical Features (typical moments, central moments, ...)
- Basic geometry

Line Estimation

- Lines are a predominant feature in engineered environments
- There is an abundance of methods for line estimation
- LSQ, Split-Merge, Hough, EM-estimation,
- RANSAC is frequently used (Fischler \& Bolles, 1981)

Voting based methods

- Voting provides a simple estimator for detection
- Voting requires:
(1) A Voting Space
(2) A voting function (structure function)
(3) A decision function (often local extrema)
- Hough (1962) is one of the most widely used. Can also be used for lines and other shapes (Ballard, 1981)

Hough based estimator

- Line model: $\rho=x * \cos (\theta)+y * \sin (\theta)$
- Voting space: $[\theta, \rho]$
- Voter: traverse θ space
- Local maximum w. NMS
- for all points in (x, y)
for each $\theta: 0 \rightarrow \pi$ calc ρ and increment (θ, ρ)
- Generates infinite lines.

Basic Hough Example

The approach for visual navigation

- Need to detect robust features for objects (we will discuss more next two sessions)
- Tracking of features over time to "keep" features in view
- Control vehicle to achieve the task objective

Hough on polar / range - bearing data

- Scanning is in polar coordinates.
- The density of points is varying.
- Close structure will accumulate more points.
- Range weighting can compensate. Proposed by Forsberg et al. (1993) Weight by $\frac{1}{\cos \left(\psi_{i}-\theta\right)}$
(c) Henrik I Christensen
- Estimation of parameters from N data items
- There are M data point in total
- How do we find the best parameters when there are many outliers?

RANSAC - Algorithm

(1) selects N data items at random
(2) estimates parameter \vec{x}
(3) finds how many data items (of M) fit the model with parameter vector \vec{x} within a user given tolerance. Call this K .
(9) if K is big enough, accept fit and exit with success.
(6) repeat $1 . .4 \mathrm{~L}$ times
(0) fail if you get here

RANSAC Example Result

LSQ line fitting

- Least square minimization:
- Line equation: $y=a x+b$
- Error in fit: $\sum_{i}\left(y_{i}-a x_{i}-b\right)^{2}$
- Solution:

$$
\binom{\overline{y^{2}}}{\bar{y}}=\left(\begin{array}{cc}
\overline{x^{2}} & \bar{x} \\
\bar{x} & 1
\end{array}\right)\binom{a}{b}
$$

- Minimizes vertical errors. Non-robust!

TLS line fitting

- Line equation: $a x+b y+c=0$
- Error in fit: $\sum_{i}\left(a x_{i}+b y_{i}+c\right)^{2}$ where $a^{2}+b^{2}=1$.
- Solution:

$$
\left(\begin{array}{ll}
\overline{x^{2}}-\bar{x} \bar{x} & \bar{x} y-\bar{x} \bar{y} \\
\overline{x y}-\bar{x} \bar{y} & y^{2}-\bar{y} \bar{y}
\end{array}\right)\binom{a}{b}=\mu\binom{a}{b}
$$

where μ is a scale factor.

- $c=-a \bar{x}-b \bar{y}$

Summary

- Starting to think about images as a primary modality for feedback
- The main sensor for CSE276A homework
- There are much more to image processing than we can cover. The book (Corke, 2023) covers much more material
- Most of the processing covered by the OpenCV library - https://opencv.org/

