Cameras, Images and Image Processing
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Cameras

Most flexible sensory modality
Complex sensory processing

Not discussed in any detail

Diverse tasking of sensor

Relatively inexpensive

°
°
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o Offers wide range
°
°
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Computationally demanding
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The pinhole camera model
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The Pin-Hole Model

@ The relations are then:
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In homogenous coordinates

@ Remember Homogeneous Coordinates?
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@ Define the Perspective transform as
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Depth from defocus
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o Basic geometry: % = % .3 %

@ The smear is proportional to distance
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Structured light
@ Segmentation of images is a “hard” problem
@ Active illumination simplifies the problem

In particular in industrial inspection

Defocus example
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Images

e Matrix of values
@ The picture element is named a pixel
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Images
@ Images are basically a 2D array of intensity/color values

@ Image types
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Photographs are Projections
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Intrinsic Calibration

3 x 3 Calibration Matrix K
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Recover image (Euclidean) coordinates by normalizing :
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Camera Calibration

e You have serious distortion on the RB5
e OpenCV (opencv-python) has tools for calibration

e https://opencv-python-tutroals.readthedocs.io/en/latest/
py_tutorials/py calib3d/py calibration/py_calibration.html

The Basic Process

Geometric Signal Feature EStlrgatlon
Correction Process Extraction

Sensor

Classification

+ Geometric Correction - Alignment to a calibration model
+ Signal Processing - Clean up of data and signal conditioning
» Feature Extraction - Data compression and signal separation

+ Estimation - Model, Space and Time Integration for estimation of key
parameters

+ Classification/Categorization - Assignment of one of N classes to data
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https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html

Geometric Correction

« Typically warping of signal to remove distortions
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Spatial operations Filtering
e Noise removal
e Edge detection o Hvonl T e
- ¥y e Texture description
e Multi-scale algorithms
(©) e Feature detection
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e Matched filters




Spatial convolutions
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What is Image Filtering”?

Modify the pixels in an image based on some

| function of a local neighborhood of the pixels
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Linear Filtering Filtering Examples
e Linear case is simplest and most useful
e Replace each pixel with a linear combination of its neighbors.
e Prescription for linear combination is called the convolution -
kernel. 5
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Filtering Examples: Identity
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Filtering Examples: Blur
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Filtering Examples: Shift

=
L 1.0
1/
=
()
S
9]
0
Pixel offset
original shifted

Convolutions to enhance images

Properties of convolution. Convolution obeys the familiar rules of algebra, it is commutative
A®B=B®A
associative
A®BRC=(A®B)®C=A® (B®C)
distributive (superposition applies)
A®(B+C)=A®B+ARC
linear
A® (0B) = 0(A®B)
and shift invariant — if S(-) is a spatial shift then
A®S(B) =S(A®B)

that is, convolution with a shifted image is the same as shifting the result of the convolution with the
unshifted image.
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Smoothing Example
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A few typical kernels

(a) Gaussian as image
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(e) Laplacian of Gaussian (f) Difference of Gaussian
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Convolution

e Represent these weights as an image, H
e His usually called the kernel
e Operation is called convolution

Example: Smoothing by Averaging

Smoothing with a Gaussian

e Averaging does not model defocussed lens well
e impulse response should be fuzzy blob

An |sotropic Gaussian

e The picture shows a smoothing kernel proportional to

e reasonable model of a circularly symmetric blob




Smoothing with a Gaussian Filter responses are correlated

e Correlated over scales similar to scale of filter

e Filtered noise is sometimes useful

e looks like some natural textures, can be used to simulate
fire, etc.

sigma=1 sigma=16




The effects of smoothing

0=0.05 a=0.1 0=0.2

a=1 pixel

=2 pixels

Edge Detection

21 Sobel Kernel (Corke Chapter 12)
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@ Canny: smart post-

|DoG| vs. Canny processing of edge

Derivative of Gaussian operator, then take magnitude
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>> Iu = iconv( castle, -kdgauss(2) );

>> Iv = iconv( castle. -kdgauss(2)' );

>> m = sqrt( Iu.”2 + Iv."2 );

Template matching

» In some cases it is entirely possible to match signals to templates
+ The template could be sub-images, or processed versions of an arbitrary

signal
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Typical performance metrics

Sum of absolute differences
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Where is waldo?
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Where is Waldo?
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Where is Waldo?
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Feature Extraction
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Simple object detection

Pixel walue histogram
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If only life was that simple

Fixel value histogram
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Adaptive thresholding

Original 7x7 mask

140x140 mask
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Feature extraction Line Estimation

+ Broad set of possible features depending on sensor modality
* Point Estimation
+ Line Estimation (mathematical vs finite lines)

* Place Estimation . . . . .
Lines are a predominant feature in engineered environments

« Geometric features (#holes, shape descriptors) ) ) ) )
There is an abundance of methods for line estimation

LSQ, Split-Merge, Hough, EM-estimation,
RANSAC is frequently used (Fischler & Bolles, 1981)

- Statistical Features (typical moments, central moments, ...)

+ Basic geometry
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Voting based methods Hough based estimator

Line model:
p = x xcos(f) + y *sin(0)

@ Voting provides a simple estimator for detection
e Voting requires:

@ A Voting Space

@ A voting function (structure function)

© A decision function (often local extrema)

Voting space: [0, p]
@ Voter: traverse 0 space

@ Hough (1962) is one of the most widely used. Can also be used for ® Local maximum w. NMS

lines and other shapes (Ballard, 1981) i}

for all points in (x,y)
foreach §:0 —
calc p and increment (6, p)

@ Generates infinite lines.
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Basic Hough Example
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Hough on polar / range - bearing data

6| k T T =
" \\\ 3\“:“* @ Scanning is in polar
y \\\\\ TR e coordinates.
1 \\ @ The density of points is
i e varying.
=, Rl S P ol ] @ Close structure will
% - : accumulate more points.
k # 7/"\ x 1 @ Range weighting can
" compensate. Proposed by
| ‘ e . : Forsberg et al. (1993).
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xinl Weight by =0
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The approach for visual navigation

Servoing &

Geometric Feature .
Tracking Control

Correction Extraction

Sensor

* Need to detect robust features for objects (we will discuss more next two
sessions)

+ Tracking of features over time to “keep” features in view

« Control vehicle to achieve the task objective
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RANSAC - Random Sampling Consensus

o Estimation of parameters B .
from N data items . .

@ There are M data point in a® %
total . o °

@ How do we find the best
parameters when there .
are many outliers? . .

(c) Henrik | Christensen




RANSAC - Algorithm

@ selects N data items at random
@ estimates parameter X

@ finds how many data items (of M) fit the model with parameter
vector X within a user given tolerance. Call this K.

Q if K is big enough, accept fit and exit with success.
© repeat 1.4 L times
Q fail if you get here
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RANSAC Example Result
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LSQ line fitting

@ Least square minimization:

e Line equation: y = ax+ b
Error in fit: Y_,(y; — ax; — b)?
Solution:

(5)-(2 1))

o Minimizes vertical errors. Non-robust!
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TLS line fitting

@ Line equation: ax+ by +c =0
o Errorin fit: >".(ax; + by; + c)? where a® + b? = 1.

@ Solution:
(25 33 ()
Xy —Xy y>-yy b

where p is a scale factor.

@ c=—ax — by
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Summary

« Starting to think about images as a primary modality for feedback
» The main sensor for CSE276A homework

» There are much more to image processing than we can cover. The book

(Corke, 2023) covers much more material

» Most of the processing covered by the OpenCV library - https://opencv.org/
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