
CSE276A - Visual Servoing

Henrik I Christensen

(c) Henrik I Christensen

HW2 - Closing the loop with vision

• Due: 31 October @ midnight

• Two options:


• Use AprilTags as landmarks in the environment

• Use natural landmarks for extra credit (it is hard!)


• Tutorial on how to use DL for detection of objects say Yolo

• https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-

opencv/ 

• 20% extra credit


• Use detected landmarks to estimate your own position

• Correct for drift in the control of the vehicle

(c) Henrik I Christensen

AprilTags

https://github.com/AprilRobotics/apriltag
(c) Henrik I Christensen

Practical stuff

• You have to calibrate your camera !

• OpenCV see later

• ROS camera calibration


• Example process with ROS modules

https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
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Literature

• Peter Corke, Robotics - Vision and Control, Springer 
Verlag, 2nd Edition, 2017 - Chapter 15

Major Robot Processes Types of visual serving

• Control Strategy 

• Position based servoing 

• Image based servoing 

• Camera Placement 

• Eye-in-Hand 

• Stand-along
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Figure 4: Visual servo systems with respect to the visual–motor model estimation.
Systems where visual-motor model is known a priori use the kinematic model
of the robot, camera parameters as well as different levels of calibration between
the camera and the robot system to estimate the desired robot motion. On the
other hand, there are systems that estimate visual-motor model either by learning or
analytically, allowing for the control without the knowledge of the robot geometry.

5 Visual-Motor Model Estimation

To classify systems according to the estimation of visual-motor model, the tax-
onomy as presented in Figure 4 and Figure 5 is adopted. If the robot forward
or inverse kinematics are known, the differential changes between the joint and
Cartesian space are computed using robot Jacobian. These systems are classified
as systems where visual-motor model is known a-priori. Depending on the feed-
back representation mode and level of calibration between the camera and the robot
frame, the visual servo systems are classified as position based, image based or 2
1/2 D systems.

Most of the early visual servo systems relied on a accurate calibration of the
system and performed tasks using the position based approach. Since the process of
calibration could be tedious, error prone or even impossible to perform, approaches
that avoid the calibration step or where a some knowledge of the calibration is suf-
ficient, became appealing. Hence, image based servo systems are usually preferred
to position based systems since they may carry out the task without the accurate
calibration. However, some knowledge of the transformation between the sensor
and the robot frame is still required.

On the other hand, there are systems that completely obviate the calibration
step and estimate the visual-motor model either on– or off–line. The visual-motor
model may be estimated: a) analytically (nonlinear least square optimization) or
b) by learning or training. In addition, as presented in Figure 5, the systems may
estimate an image Jacobian and use the known robot model or a coupled robot-
image Jacobian may be estimated.
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Utilization of kinematic models

JOINT
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Image JacobianRobot Jacobian

Coupled Image−Robot Jacobian

Figure 5: Some of the visual servo systems use the knowledge of robot kinemat-
ics (robot Jacobian) and then the image Jacobian relates the differential changes
between image features and the robot’s Cartesian velocities or incremental pose
changes. On the other hand, a coupled robot-image Jacobian relates the differen-
tial changes between the robot joints and image features.

5.1 A-priori Known Models (Calibrated Models)

As already mentioned, we classify visual servoing approaches based on the feed-
back representation mode. These can be: i) position based, ii) image based and
iii) 2 1/2 D visual servo systems. We now present the basic ideas and discuss the
characteristics of each of them.

5.1.1 Position based control

Position based visual servoing is usually referred to as a 3D servoing control since
image measurements are used to determine the pose of the target with respect to
the camera or some common world frame. The error between the current and
the desired pose of the target is defined in the task (Cartesian) space of the robot.
Hence, the error is a function of pose parameters, e(X).

Two examples of position based servoing are presented in Figure 6. The fig-
ure on the left shows an example where the camera is controlled from its current
pose, CXO, so to achieve the desired pose with respect to the object, CX∗

O. In this
example, the camera is attached to the last link of a manipulator and observes a
static or a moving target, and the model of the object is used to estimate its pose.
The figure on the right shows an example of a static camera and a moving object.
It is assumed here that the object is held by a manipulator which is then controlled
to, again, achieve the desired pose between the object and the camera. Since the
pose of the object is estimated relative to the camera, the transformation between
the robot and the camera has to be known to generate the required motion of the
manipulator.

These examples demonstrate two main reasons why the position based visual
servoing is usually not adopted for servoing tasks: i) it requires the estimation of
the pose of the target or which requires some form of a model, and ii) to estimate
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Example of position based visual servoing
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Figure 6: Two examples of position based visual servoing control: left) an example
of an eye–in–hand camera configuration where the camera/robot is servoed from
the CXO (current pose) to the CX∗

O (desired pose), and right) a monocular, stand–
alone camera system used to servo a robot held object from its current to the desired
pose.

the desired velocity screw of the robot and in order to achieve accurate positioning,
it requires precise system calibration (camera, camera/robot). A block diagram of
the position based visual servoing approach is presented in Figure 7. Here, the
difference in pose between the desired and the current pose represents an error
which is then used to estimate the velocity screw for the robot, q̇ = [V;Ω]T , so to
minimize the error.

An Example: Align and track task

Let us assume that the task is to first achieve and maintain a constant pose between
the object and robot end–effector, OX∗

G. According to (Hutchinson et al. 1996), this
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Figure 7: A block diagram of the position based visual servoing: the pose of the
target is estimated, CXO and compared to the reference (desired) pose, CX∗

O. This
is then used to estimate the velocity screw, q̇ = [V; Ω]T , for the robot so to mini-
mize the error.
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the CXO (current pose) to the CX∗
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alone camera system used to servo a robot held object from its current to the desired
pose.
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Relevant reference framesis considered as an EOL (endpoint open loop) system, since only the target object
is observed during the servoing sequence.
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Figure 8: Relevant coordinate frames and their relationships for the “Align–and–
track” task where a stand–alone camera system is used to guide the robot to the
desired pose with respect to the object. Here, OX∗

G represents the desired pose
between the object and the end–effector while OXG represents the current (or ini-
tial) pose between them. To perform the task using the position based servoing
approach, the transformation between the camera and the robot coordinate frames,
CXR, has to be known. The pose of the end-effector with respect to the robot base
system, RXG is known from the robot’s kinematics.

The manipulator is controlled in the end-effector frame. According to Figure 8,
if OXG = OX∗

G then RXG = RX∗
G. The error function to be minimized may then

be defined as the difference between the current and the desired end-effector pose:

∆ RtG = RtG− Rt∗G
∆ RθG = RθG− Rθ∗G

(2)

Here, RtG and RθG are known from the forward kinematics equations and Rt∗G and
Rθ∗G have to be estimated. The homogeneous transformation between the robot and
desired end–effector frame is given by:

RX∗
G = RXC CXO OX∗

G (3)

The pose between the camera and the robot is estimated off–line 3 and the pose of
the object relative to the camera frame is estimated using the model based tracking

3The homogeneous transformation relating the camera and the robot coordinate frames was ob-
tained off–line. A LED was placed at the end of the manipulator chain and its position in the im-
age was estimated while the manipulator moved through a number of predefi ned points. Assum-
ing the knowledge of the camera intrinsic parameters, the pose estimation approach presented in
(Kragic 2001) was used to estimate the transformation between the robot and the camera.
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PBS Cartoon

Figure 9: A sequence from a 6DOF visual task: From an arbitrary starting position
(upper left), the end–effector is controlled to a predefined reference position with
respect to the target object, (upper right). When the object starts moving, the visual
system tracks the pose of the object. The robot is then controlled in a position based
framework to remain a constant pose between the gripper and the object frame.

system presented in (Kragic 2001). Expanding the transformations in (Eq. 3) we
get:

Rt∗G = RRC CR̂O Ot∗G+ RRC C t̂O+ RtC (4)

where CR̂O and C t̂O represent predicted values obtained from the tracking algo-
rithm. Similar expression can be obtained for the change in rotation by using the
addition of angular velocities (see Figure 8) and (Craig 1989):

RΩ∗
G = RΩC+ RRC CΩ̂O+ RRC CR̂O OΩ∗

G (5)

Assuming that the RRC and CR̂O are slowly varying functions of time, integration
of RΩ∗

G gives (Wilson et al. 1996):

Rθ∗G ≈ RθC + RRC Cθ̂O+ RRC CR̂O Oθ∗G (6)

Substituting (Eq. 4) and (Eq. 6) into (Eq. 2) yields:

∆ RtG = RtG− RtC− RRC C t̂O− RRC CR̂O Ot∗G
∆ RθG ≈ RθG− RθC− RRC Cθ̂O− RRC CR̂O Oθ∗G

(7)
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Strategy

• Compute 

• The change in robot coordinates (use, PID, …)

which represents the error to be minimized:

e=
[
∆ RtG
∆ RθG

]
(8)

After the error function is defined, a simple proportional control law is used to
drive the error to zero. The velocity screw of the robot is defined as4:

q̇≈Ke (9)

By using the estimate of object’s pose and defining the error function in terms of
pose, all six degrees of freedom of the robot are controlled.

A few example images obtained during one of the experimental sequences are
shown Figure 9. From an arbitrary starting position, the end–effector is moved to
a predefined stationing pose with respect to the target object (first row, left). When
the object starts to move, the visual system estimates its pose, CXO. The error is
estimated according to (Eq. 8) and used to estimate the velocity screw of the robot
using (Eq. 9).

In general, the main advantage of this approach is that the camera/robot trajec-
tory is controlled directly in the Cartesian coordinates. This allows easier trajectory
planning for e.g., obstacle avoidance. However, especially in the case of eye–in–
hand camera configuration, image features used for pose estimation may get out of
the image. The reason is that the control law does not incorporate any constraints
when it comes to image plane feature coordinates. If the camera is only coarsely
calibrated (i.e., the camera parameters are approximately known), the current and
desired camera poses will not be accurately estimated which will thus lead to a
poor performance (in terms of accuracy) or even a complete failure of the visual
servoing task. One of the solutions to this problem is to design the servo system
as an endpoint closed loop system where both the target and the end–effector are
observed during the execution of the task (Hutchinson et al. 1996).

There are examples of utilizing both eye-in-hand and stand-alone camera con-
figurations for position based control. The examples range from planar positioning
systems (Allen et al. 1993), to systems that use object models and demonstrate full
pose determination in real–time, see for example (Wilson et al. 1996), (Wunsch &
Hirzinger 1997) and (Drummond & Cipolla 1999b).

An extensive evaluation of the position based visual servoing with respect to
trade–offs between the requirements of speed, accuracy and robustness is given in
(Wilson et al. 2000). Since most of the reported systems adopting this approach
concentrate on the extraction of the visual information rather than on the analysis
of sensitivity, etc., we provide additional references in Section 6. The section also
provides a number of pointers related to the pose estimation problem, structure–
from–motion, and stereo reconstruction problems.
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Example PBS simulation Image Based Visual Servoing (IBVS) 
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Figure 10: An example of image based visual servoing. Let us assume a case of
a static camera and a robot holding the object. A number of feature points on the
object is tracked and used to generate a vector of current measurements, fc. The
vector of reference measurements is denoted f∗. The error function is defined as a
function of distance between these measurements, e = fc− f∗. This error function
is then updated in each frame and used used together with the image Jacobian to
estimate the control input to the robot.

5.1.2 Image based control

Image based visual servoing involves the estimation of the robot’s velocity screw,
q̇, so as to move the image plane features, fc, to a set of desired locations, f∗, (Hager
et al. 1995), (Malis et al. 1998), (Chaumette et al. 1991). Image based visual
servoing control involves the computation of the image Jacobian or the interaction
matrix, (Hutchinson et al. 1996), (Espiau et al. 1992), (Hashimoto & Noritsugu
1998). The image Jacobian represents the differential relationship between the
scene frame and the camera frame (where either the scene or the camera frame is
usually attached to the robot):

J(q) =
[

δf
δq

]
=

⎡

⎢⎢⎣

δ f1(q)
δq1 . . . δ f1(q)

δqm
... . . . ...

δ fk(q)
δq1 . . . δ fk(q)

δqm

⎤

⎥⎥⎦ (10)

where q represents the coordinates of the end-effector in some parameterization of
the task space T , f [ f1, f2, ..., fk ] represents a vector of image features, m is the
dimension of the task space T and k is number of image features. The relationship
between a velocity screw associated to the manipulator and the image parameters
rates of change is given by:

ḟ= J q̇ (11)
4It is straightforward to estimate the desired velocity screw in the end–effector coordinate frame.
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Canonical image motion patterns The Image Jacobian

• How does features move when we move the robot? 

• Image Jacobian
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Figure 10: An example of image based visual servoing. Let us assume a case of
a static camera and a robot holding the object. A number of feature points on the
object is tracked and used to generate a vector of current measurements, fc. The
vector of reference measurements is denoted f∗. The error function is defined as a
function of distance between these measurements, e = fc− f∗. This error function
is then updated in each frame and used used together with the image Jacobian to
estimate the control input to the robot.

5.1.2 Image based control

Image based visual servoing involves the estimation of the robot’s velocity screw,
q̇, so as to move the image plane features, fc, to a set of desired locations, f∗, (Hager
et al. 1995), (Malis et al. 1998), (Chaumette et al. 1991). Image based visual
servoing control involves the computation of the image Jacobian or the interaction
matrix, (Hutchinson et al. 1996), (Espiau et al. 1992), (Hashimoto & Noritsugu
1998). The image Jacobian represents the differential relationship between the
scene frame and the camera frame (where either the scene or the camera frame is
usually attached to the robot):
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Going back to basics Going back to basics

• With a unit focal length we would have  

• We can define an error metric

Using a classical perspective projection model with unit focal length, the relation-
ship between an image point velocity and a 3D velocity screw is given by:

[
ẋ
ẏ

]
=

[ 1
Z 0 − x

Z xy (1+ x2) −y
0 1

Z − y
Z −(1+ y2) xy x

]
q̇ (12)

where Z represents the 3D distance of the point with respect to the camera. Im-
age based visual servo systems express the control error function directly in 2D
image space. If image positions of point features are used as measurements, the
error function is defined simply as a difference between the current and the desired
feature positions:

e(f) = fc− f∗ (13)

The most common approach to generate the control signal for the robots is the
use of a simple proportional control5 (see (Papanikolopoulous & Khosla 1993) and
(Hashimoto, Ebine & Kimura 1996) for an optimal control approach):

u= q̇=KJ†e(f) (14)

where J† is the (pseudo-)inverse of the image Jacobian and K is a constant gain
matrix.

Figure 10 shows an example of an image based visual servoing approach where
it is assumed that the camera is static and that it observes the robot holding an
object. A number of feature points on the object are tracked and used to generate
a vector of current measurements, fc. The vector of reference measurements is
denoted f∗. The error function is defined as a function of distance between these
measurements according to (Eq. 13). This error function is then updated in each
frame and used together with the image Jacobian to estimate the control input to
the robot using (Eq. 14).

The vector of reference measurements, f∗, is usually generated using a so called
“teach by showing” approach where the robot is first moved to a desired position
and the image coordinates of feature positions are recorded. After that, the robot is
moved to some other, initial position and visual tracking is initiated. In a closed–
loop manner, the robot is controlled while moving to the desired or “taught” po-
sition while tracking the features and estimating fc. In (Horaud et al. 1998), the
desired position between the gripper and an object is defined through a projective
representation and the new goal image is computed when the target changes instead
of being learnt manually.

According to (Eq. 12), the estimation of the image Jacobian requires knowl-
edge of the camera intrinsic and extrinsic parameters. Extrinsic parameters also
represent a rigid mapping between the scene or some reference frame and the cam-
era frame. If one camera is used during the servoing process, the depth informa-
tion needed to update the image Jacobian is lost. Therefore, many of the existing
systems usually rely on a constant Jacobian which is computed for the desired

5With an assumption that the target is motionless.
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For K points we can stack Visual impression of image jacobian



Simulated example Sketch of an IBVS example 
Assumptions: i) no models of the objects are given, ii) an image based track-

ing algorithm is available (which estimates 2D image positions of feature
points), iii) a stereo stand–alone camera system is used during the execution
of the tasks.

fl
c

f*l fr*

frc

R

G
R

XC

X

Figure 11: A schematic overview of a point–to–point positioning task using a
binocular camera system. The error function is defined for the left, e l = fcl − f∗l ,
and the right image, er = fcr − f∗r . To drive this error to zero the image Jacobian is
estimated by stacking of a two monocular image Jacobians defined for each of the
cameras. To control three translational degrees of freedom of the manipulator, it is
enough to estimate the distance between two points in each image. This approach
does not require accurate estimation of the transformation between the robot and
the camera coordinate systems, that is, CXR has to be only roughly known.

The examples presented in this section are to large extent motivated by the
work presented in (Hager et al. 1995). No metric information about the object is
used. Calibration insensitive positioning and alignment are performed by tracking
small regions on the target and the end–effector. Although the examples shown
are very basic and simple, they are necessary building blocks for more complex
hand–eye tasks (Dodds et al. 1999).

Figure 11 shows an example of a task and setting used to perform a positioning
task using feedback from stereo vision. Here, the image based visual servoing
approach is used to minimize an error function defined directly in the image. As
it can be seen in the figure, there is a feature (in this case it is assumed that it is a
point feature) on the end–effector denoted fcl and f

c
r for the left and the right image,

19

IBVS Cartoon

Figure 12: Example images obtained during the execution of the insertion task.

respectively. The position of the feature is tracked and used to design a control law
to bring that point to the position denoted f∗l and f

∗
r . The task is accomplished when

fc and f∗ coincide in both images.
The first task is to place a screwdriver in the hole on the upper side of the box,

see Figure 12. The diameter of the hole is approximately 5mm. The screwdriver
is held by the robot and a constant relationship between them is assumed (rigidity
constraint). A predefined configuration of the last three joints of the robot is used
and the robot holds the screwdriver vertically with respect to the table plane. Only
three degrees of freedom of the robot are controlled corresponding to the positional
degrees of freedom, T ⊆ R (3). In each image, the region around the tip of the
screwdriver is tracked and its position fl and fr is used to estimate the error:

el = fl− f∗l
er = fr− f∗r

(15)

The desired positions f∗l and f∗r are chosen manually at the beginning of the
servoing sequence. Using (Eq. 14), the relationship between the robot’s kinematic
screw and the observed speed of the image features in the left and right cameras
respectively is:

Kl el = Jl(q) Gq̇
Kr er = Jr(q) Gq̇

(16)
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2.5D image based servoing



What if we could estimate Z online?

• We can rearrange 

=>

Example from the book

Summary / Take Home

• Image vs. position based servoing 

• Derivation of motion impact on image coordinates 

• Use of basic motion models to control the robot 

• Great support for PBS and IBVS in the RVT toolkit


