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Introduction

@ Going a bit more abstract today

e Calc of variations is tightly coupled to mechanics
@ We will only covers the very basics

@ Entire courses at UCSD — MATH201C
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Applications

Path Optimization
Vibrating membranes
Electrostatics

Machine vision — reconstruction

Vision - image flow, ...
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Introduction (cont)

@ We have seen the principle
@ To minimize P is to solve P’ =0

@ So far we have looked at finite dimensional problems
o R" >R
Looking at N numbers to minimize f
@ In infinite dimensional problems we are considering an continuum

@ What about functionals - (functions of functions)?
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Example

@ Suppose we connect two points in the plane (xg, yo) and (x1, y1)
by a curve of the form y = y(x).

@ The length of the curve can be written

L(y) = /XXI 1+ () dx

L is a functional.
@ Find the shortest curve between the two points.
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Similar problems

Shortest path connecting a non-planar curve, say sphere
Minimal surface of revolution generated by a connected curve
Shortest curve with a given area below it

Closed curve of a given perimeter that encloses the largest area

Shape of a string hanging from two points under gravity

Path of light traveling through an inhomogenous curve
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Euler's Equation

@ The principle of

o To minimize P isto solve P' =0

@ Rather than solving the integral it is an advantage to consider the differential
equation.

@ The differential equation is called Euler Equation.

o We will derive it shortly
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Consider for a minute

@ Suppose f : R" — R what does it mean for x* to be a local extremum of {7
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Consider for a minute

@ Suppose f : R" — R what does it mean for x* to be a local extremum of {7

@ We must have f(x) > f(x™) for every x in some neighborhood
© A necessary condition Vf(x*) =0 i.e., that % =0 for all i.

@ For P the equivalent would be say
Q@ P:C*(R") — R and
@ f — P(f)

@ what does it mean for f* to be an extremum of P?
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Optimal functional?

@ What would be conditional for a functional?
Q@ We need P(f) > P(f") for every functional close to f*

@ So what is a neighborhood of a function?

@ Need a generalized gradient
P(f* 4 6f) =~ P(f")

e Still very hand wavy
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Simplest problem

@ Lets start with a simple problem

o \ - X / . 2
e Minimize J(y) = fxo F(x,y,y")dx with y, F € C
@ Suppose y* minimizes J it would then be true

© In a neighborhood of y* then J(y) > J(y™")
@ 6J = 0 for a variation dy is

6J(y") = J(y* +oy) —J(y")

@ What are the necessary conditions for this to be valid
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Neighborhood Evaluation

Lets start by showing optimality in a neighborhood
Let y € C?[xg, x1] such that y(xp) = y(x1) = 0
Let € € R be a value

Lets consider a one-parameter family of functions

y(x) =y (x) +ey(x)

@ Where y* is the (unknown) optimal function
@ Define ®: R — R by

() = / F(x,y.y')dx
X0

@ If |¢| is small enough then all variants of y* + €y lie in a small neighborhood
of y*, therefore ® attains a local minimum at e =0

@ Thus it must be true that ¢'(0) =0
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@ We know that

d(e) = /X1 F(x,y,y")dx

X0

@ So it must be true that
d [
d'(e) = = /XO F(x,y,y")dx

@ Given that we have a C? domain we can reverse the order of integration and
differentiation, so that

X1 d
d'(e) = / aF(x,y,y’)dX
X0
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@ We know that

d(e) = /X1 F(x,y,y")dx

X0

@ So it must be true that
d [™
d'(e) = = /XO F(x,y,y")dx

@ Given that we have a C? domain we can reverse the order of integration and
differentiation, so that

X1 d
®(e) = [ 5Pl
X0

or
/ Xl 0 * *’ / 0 * */ NI
P'(e) = @F(X,y +ey,y +6y)y+8—y,F(X,y +ey,y" +ey)y | d

@ We know that
0

Xl * *! 8 * *!
¢’(0)=0=/ (EF(X,y Ly )y+—8y,F(X,y .y )y’) dx
X0
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Still more @’

@ We can write this more compactly

X1
¥0) = [ (Fy+Fy)dx
X0
@ Using integration by parts we get

X X1 d
fxol Fy/y/dX = Fy/‘))/<l|§(l) ; onl ya Fy/ dX
= —Jo Vi F:dx

with this we can rewrite
®'(0) = /X1 F, — d Fy | ydx =0
o Y dx |

as this has to apply for any function y it must be true that

d
Fy— &Fy/ =0on [Xo,X1]

@ This is called Euler's Equation
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@ The Euler Equation is essentially a “directional derivative” in the direction of
y
@ Going back to earlier - J is finding a function y* where J is stationary.

@ We are only considering the basics here.
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Shortest path problem

@ Remember the initial question of shortest path?

X1
L) = [ VI yPax
X0

with yp = y(x0) and y1 = y(x1)

® So F(x,y,y') =+/14+y"

F, =0and F, =

@ Recall:

/

y

Jiiy?

e Euler’'s Equation reduces to
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e So

@ we can rewrite

y/2 — C2(1 +y/2)

y' = =z~ = mjust a constant
y' = m

y = mx+b

surprise it is the equation for a straight line!
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How about constrained optimization?

@ Supposed we are supposed to find shortest curve with a fixed area below?

A
(x0,y0) (x1,y1)
| |
| |
| |
| |
| |
| |
| |
| |
| |
I A I
l l
L 1 >
X
XO X1
@ The area is given to be A and we have end-points?

Constrained optimization

@ Our objective is then to optimize

L) = [ JIT R
A = f;: ydx

@ where the second term is our constraint

@ An instance of a general class of problems called isoperimetric problems
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|soperimetric problems

@ The simplified formulation is
Minimize — J(y) = [ F(x,y,y")dx
Subject to  K(y)=c
where K(y) = f): G(x,y,y")dx
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Constrained Optimization (cont.)

@ We can use a combination of variational techniques and Lagrange multipliers
to solve such problems

@ We can define two functions

O(er,e2) = [o Fxy" +ay+eal,y” +eay +ef)dx
Ve, ) = [ Glxy* +eay+ealy" +eay +et)dx

@ Here y* is the unknown function and y and ¢ are two C? functions that
vanish at the end-points

@ So we want to minimize ® subject to the constraint V. We know there is a
local minimum at e = e, =0

H. I. Christensen (UCSD) Math for Robotics Oct 2023 20/26



Constrained Optimization (Cont.)

@ Using a Lagrange approach we can form the function
E(El, €2, )\) = ¢(61, 62) + )\(W(Gl, 62) — C)

@ At the local minimum - VE =0

@ In other words there is a Ay such that

2 E(0,0,X0) =0 2E(0,0,X0) =0
9E(0,0, Ao) = 0
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Constrained Optimization - let's compute

@ Interchanging differentiation and integration we get

0 Xl
gE((),(),)\O):/ (Fyy+Fy/y/+>\Ony+)‘0Gy’y/) dx
1 X0
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Constrained Optimization - let's compute

@ Interchanging differentiation and integration we get

0 Xl
gE((),(),)\O):/ (Fyy+Fy/y/+>\Ony+)‘0Gy’y/) dx
1 X0

@ We can do integration by parts and as y vanishes at end-points we see that

0 & d d
8—61E(0,0,)\0)—/X0 <le—&Fy/:| —{—)\0 le—aGy/]>de
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Constrained Optimization - let's compute

@ Interchanging differentiation and integration we get

0 Xl
gE((),(),)\O):/ (Fyy+Fy/y/+>\Ony+)‘0Gy’y/) dx
1 X0

@ We can do integration by parts and as y vanishes at end-points we see that

0 & d d
8—61E(0,0,)\0)—/X0 <le—&Fy/:| —{—)\0 le—aGy/]>de

e Similarly:

) “ d d
9, £(0.0.%0) = /X (le - a@} + Ao {Gy - &Gy,D Edx
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Constrained Optimization - let's compute

@ Interchanging differentiation and integration we get

0 .
gE(o 0,\) = / (Fyy + Fyry' + XoGyy + Mo Gyry') dx
1

X0

@ We can do integration by parts and as y vanishes at end-points we see that

0 & d d
8—61E(00)\0) /XO <le—&Fy/:|+A0 le—&Gy/‘|>de

e Similarly:

0 X1 d d
deo E(O7O’)‘0):/X0 ([Fy_al:y’] + Ao {Gy_&Gy’}>§dX

@ As before we can conclude

d d
le—&Fy/] +)\0 le—aGy/] :0
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Back to our example

@ So we can utilize
F(x,y,y')=V1+y? G(x,y,y)
y—O y—l

/. = y ;) =
Fr= = Gy =0

@ We want to satisfy the differential equation

d y'

_& /1 +y/2

+X=0

e Or
—y p—
’—1+y’2 )\oX +c

2
1_)‘/_}//2 — (AOX + C)
) (>\ox—i-c)2

Y T T (Doxto)?
y/ . :|: AoXx—+c

v/ 1—(Xox+c)?
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Example (cont.)

@ We can do the integration

AoXx+cC

Y(X) = f\/T_'_C)z

substitute u = M\gx + ¢ and du = \gdx
- if\/idu— VI 7+

@ This can be rewritten to

@ That is a circle arc!
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Extensions

@ For multiple variable you can formulate it similar to the simple case
@ Ex: Shortest path in a multiple dimensional space
e Ex: Light ray tracing through non-homogeneous media

@ You would extend Euler's Equation to have more terms
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Summary

@ Merely broached calculus of variation

@ Powerful tool for optimization and derivation of analytical models
@ Models for airplane wings, elastic membranes
°

Important to consider it part of your toolbox
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