

CSE276C - Calculus of Variation

Henrik I. Christensen

Computer Science and Engineering University of California, San Diego

October 2023

Introduction

- Going a bit more abstract today
- Calc of variations is tightly coupled to mechanics
- We will only covers the very basics
- Entire courses at UCSD MATH201C

Applications

- Path Optimization
- Vibrating membranes
- Electrostatics
- Machine vision reconstruction
- Vision image flow, ...

H. I. Christensen (UCSD)

Math for Robotics

Oct 2023

3 / 26

Introduction (cont)

- We have seen the principle
 - To minimize P is to solve P' = 0
- So far we have looked at finite dimensional problems
 - f: $\mathcal{R}^n \to \mathcal{R}$

Looking at N numbers to minimize f

- In infinite dimensional problems we are considering an continuum
- What about functionals (functions of functions)?

Example

• Suppose we connect two points in the plane (x_0, y_0) and (x_1, y_1) by a curve of the form y = y(x).

• The length of the curve can be written

$$L(y) = \int_{x_0}^{x_1} \sqrt{1 + (y')^2} dx$$

L is a functional.

• Find the shortest curve between the two points.

H. I. Christensen (UCSD)

Math for Robotics

Oct 2023

5 / 26

Similar problems

- Shortest path connecting a non-planar curve, say sphere
- Minimal surface of revolution generated by a connected curve
- Shortest curve with a given area below it
- Closed curve of a given perimeter that encloses the largest area
- Shape of a string hanging from two points under gravity
- Path of light traveling through an inhomogenous curve

Euler's Equation

• The principle of

- To minimize P is to solve P' = 0
- Rather than solving the integral it is an advantage to consider the differential equation.
- The differential equation is called Euler Equation.
- We will derive it shortly

H. I. Christensen (UCSD)	Math for Robotics	Oct 2023 7 / 2	26
Consider for a minu	+ <u>o</u>		
• Suppose $f: \mathcal{R}^n \to \mathcal{R}$ v	what does it mean for x^* to b	e a local extremum of f?	

Consider for a minute

Suppose f : Rⁿ → R what does it mean for x* to be a local extremum of f?
We must have f(x) ≥ f(x*) for every x in some neighborhood
A necessary condition ∇f(x*) = 0 i.e., that ∂f/∂x_i = 0 for all i.

- For P the equivalent would be say
 - $P: C^2(\mathcal{R}^n) \to \mathcal{R} \text{ and }$
 - 2 $f \rightarrow P(f)$
- what does it mean for f^* to be an extremum of P?

Simplest problem

• What are the necessary conditions for this to be valid

Neighborhood Evaluation

- Lets start by showing optimality in a neighborhood
- Let $y \in C^2[x_0, x_1]$ such that $y(x_0) = y(x_1) = 0$
- Let $\epsilon \in \mathcal{R}$ be a value

H. I. Christensen (UCSD)

Lets consider a one-parameter family of functions

$$y(x) = y^*(x) + \epsilon y(x)$$

Math for Robotics

- Where *y*^{*} is the (unknown) optimal function
- Define $\Phi : \mathcal{R} \to \mathcal{R}$ by

$$\Phi(\epsilon) = \int_{x_0}^{x_1} F(x, y, y') dx$$

- If |ε| is small enough then all variants of y* + εy lie in a small neighborhood of y*, therefore Φ attains a local minimum at ε = 0
- Thus it must be true that $\Phi'(0) = 0$

Oct 2023

So what is Φ' ?

• We know that

$$\Phi(\epsilon) = \int_{x_0}^{x_1} F(x, y, y') dx$$

• So it must be true that

$$\Phi'(\epsilon) = \frac{d}{d\epsilon} \int_{x_0}^{x_1} F(x, y, y') dx$$

• Given that we have a C^2 domain we can reverse the order of integration and differentiation, so that

$$\Phi'(\epsilon) = \int_{x_0}^{x_1} \frac{d}{d\epsilon} F(x, y, y') dx$$

So what is Φ' ?

H. I. Christensen (UCSD)

• We know that

$$\Phi(\epsilon) = \int_{x_0}^{x_1} F(x, y, y') dx$$

Math for Robotics

• So it must be true that

$$\Phi'(\epsilon) = \frac{d}{d\epsilon} \int_{x_0}^{x_1} F(x, y, y') dx$$

• Given that we have a C^2 domain we can reverse the order of integration and differentiation, so that

$$\Phi'(\epsilon) = \int_{x_0}^{x_1} \frac{d}{d\epsilon} F(x, y, y') dx$$

or

$$\Phi'(\epsilon) = \int_{x_0}^{x_1} \left(\frac{\partial}{\partial y} F(x, y^* + \epsilon y, y^{*'} + \epsilon y') y + \frac{\partial}{\partial y'} F(x, y^* + \epsilon y, y^{*'} + \epsilon y') y' \right) d\lambda$$

• We know that

$$\Phi'(0) = 0 = \int_{x_0}^{x_1} \left(\frac{\partial}{\partial y} F(x, y^*, y^{*'}) y + \frac{\partial}{\partial y'} F(x, y^*, y^{*'}) y' \right) dx$$

Math for Robotics

Oct 2023

12 / 26

Oct 2023

Still more Φ'

• We can write this more compactly

$$\Phi'(0) = \int_{x_0}^{x_1} \left(F_y y + F_{y'} y' \right) dx$$

• Using integration by parts we get

$$\int_{x_0}^{x_1} F_{y'} y' dx = F_{y'} y|_{x_0}^{x_1} - \int_{x_0}^{x_1} y \frac{d}{dx} F_{y'} dx = -\int_{x_0}^{x_1} y \frac{d}{dx} F_{y'} dx$$

with this we can rewrite

$$\Phi'(0) = \int_{x_0}^{x_1} \left[F_y - \frac{d}{dx} F_{y'} \right] y dx = 0$$

as this has to apply for any function y it must be true that

$$F_{y} - \frac{d}{dx}F_{y'} = 0 \text{ on } [x_0, x_1]$$

Math for Robotics

• This is called Euler's Equation

H. I. Christensen (UCSD)

Side comment

- The Euler Equation is essentially a "directional derivative" in the direction of y
- Going back to earlier δJ is finding a function y^* where J is stationary.
- We are only considering the basics here.

Oct 2023

Shortest path problem

• Recall:

• Remember the initial question of shortest path?

$$L(y) = \int_{x_0}^{x_1} \sqrt{1 + {y'}^2} dx$$

with $y_0 = y(x_0)$ and $y_1 = y(x_1)$ • So $F(x, y, y') = \sqrt{1 + {y'}^2}$

$$F_y=0$$
 and $F_{y'}=rac{y'}{\sqrt{1+{y'}^2}}$

• Euler's Equation reduces to

$$\frac{d}{dx}\frac{y'}{\sqrt{1+y'^2}}=0$$

Math for Robotics

The shortest path?

H. I. Christensen (UCSD)

$$\frac{y'}{\sqrt{1+y'^2}} = c$$

• we can rewrite

So

$$y'^{2} = c^{2}(1 + y'^{2})$$

$$y' = \pm \frac{c}{\sqrt{1 - c^{2}}} = m \text{ just a constant}$$

$$y' = m$$

$$y = mx + b$$

surprise it is the equation for a straight line!

16 / 26

Oct 2023

How about constrained optimization?

• The area is given to be A and we have end-points?

 H. I. Christensen (UCSD)
 Math for Robotics
 Oct 2023
 17/26

 Constrained optimization
 Image: Constrained optimization
 Image: Constrained optimization
 Image: Constrained optimization

 • Our objective is then to optimize
 $L(y) = \int_{x_0}^{x_1} \sqrt{1 + {y'}^2} dx$ $A = \int_{x_0}^{x_1} y dx$

- where the second term is our constraint
- An instance of a general class of problems called isoperimetric problems

Isoperimetric problems

Constrained Optimization (cont.)

• We can use a combination of variational techniques and Lagrange multipliers to solve such problems

Math for Robotics

• We can define two functions

H. I. Christensen (UCSD)

$$\begin{array}{lll} \Phi(\epsilon_1,\epsilon_2) &=& \int_{x_0}^{x_1} F(x,y^*+\epsilon_1y+\epsilon_2\xi,y^{*'}+\epsilon_1y'+\epsilon_2\xi')dx\\ \Psi(\epsilon_1,\epsilon_2) &=& \int_{x_0}^{x_1} G(x,y^*+\epsilon_1y+\epsilon_2\xi,y^{*'}+\epsilon_1y'+\epsilon_2\xi')dx \end{array}$$

- Here y^* is the unknown function and y and ξ are two C^2 functions that vanish at the end-points
- So we want to minimize Φ subject to the constraint Ψ . We know there is a local minimum at $\epsilon_1 = \epsilon_2 = 0$

Oct 2023

Constrained Optimization (Cont.)

• Using a Lagrange approach we can form the function

$$E(\epsilon_1, \epsilon_2, \lambda) = \Phi(\epsilon_1, \epsilon_2) + \lambda(\Psi(\epsilon_1, \epsilon_2) - c)$$

- At the local minimum $\nabla E = 0$
- $\bullet\,$ In other words there is a λ_0 such that

$$\frac{\frac{\partial}{\epsilon_1}E(0,0,\lambda_0)=0}{\frac{\partial}{\lambda}E(0,0,\lambda_0)=0} \qquad \frac{\frac{\partial}{\epsilon_2}E(0,0,\lambda_0)=0}{\frac{\partial}{\lambda}E(0,0,\lambda_0)=0}$$

Constrained Optimization - let's compute

• Interchanging differentiation and integration we get

$$\frac{\partial}{\partial \epsilon_1} E(0,0,\lambda_0) = \int_{x_0}^{x_1} \left(F_y y + F_{y'} y' + \lambda_0 G_y y + \lambda_0 G_{y'} y' \right) dx$$

Math for Robotics

H. I. Christensen (UCSD)

Oct 2023

Constrained Optimization - let's compute

• Interchanging differentiation and integration we get

$$\frac{\partial}{\partial \epsilon_1} E(0,0,\lambda_0) = \int_{x_0}^{x_1} \left(F_y y + F_{y'} y' + \lambda_0 G_y y + \lambda_0 G_{y'} y' \right) dx$$

• We can do integration by parts and as y vanishes at end-points we see that

$$\frac{\partial}{\partial \epsilon_1} E(0,0,\lambda_0) = \int_{x_0}^{x_1} \left(\left[F_y - \frac{d}{dx} F_{y'} \right] + \lambda_0 \left[G_y - \frac{d}{dx} G_{y'} \right] \right) y dx$$

H. I. Christensen (UCSD)

Math for Robotics

Oct 2023

22 / 26

Constrained Optimization - let's compute

• Interchanging differentiation and integration we get

$$\frac{\partial}{\partial \epsilon_1} E(0,0,\lambda_0) = \int_{x_0}^{x_1} \left(F_y y + F_{y'} y' + \lambda_0 G_y y + \lambda_0 G_{y'} y' \right) dx$$

• We can do integration by parts and as y vanishes at end-points we see that

$$\frac{\partial}{\partial \epsilon_1} E(0,0,\lambda_0) = \int_{x_0}^{x_1} \left(\left[F_y - \frac{d}{dx} F_{y'} \right] + \lambda_0 \left[G_y - \frac{d}{dx} G_{y'} \right] \right) y dx$$

• Similarly:

$$\frac{\partial}{\partial \epsilon_2} E(0,0,\lambda_0) = \int_{x_0}^{x_1} \left(\left[F_y - \frac{d}{dx} F_{y'} \right] + \lambda_0 \left[G_y - \frac{d}{dx} G_{y'} \right] \right) \xi dx$$

Constrained Optimization - let's compute

• Interchanging differentiation and integration we get

$$\frac{\partial}{\partial \epsilon_1} E(0,0,\lambda_0) = \int_{x_0}^{x_1} \left(F_y y + F_{y'} y' + \lambda_0 G_y y + \lambda_0 G_{y'} y' \right) dx$$

• We can do integration by parts and as y vanishes at end-points we see that

$$\frac{\partial}{\partial \epsilon_1} E(0,0,\lambda_0) = \int_{x_0}^{x_1} \left(\left[F_y - \frac{d}{dx} F_{y'} \right] + \lambda_0 \left[G_y - \frac{d}{dx} G_{y'} \right] \right) y dx$$

• Similarly:

$$\frac{\partial}{\partial \epsilon_2} E(0,0,\lambda_0) = \int_{x_0}^{x_1} \left(\left[F_y - \frac{d}{dx} F_{y'} \right] + \lambda_0 \left[G_y - \frac{d}{dx} G_{y'} \right] \right) \xi dx$$

• As before we can conclude

$$\left[F_{y} - \frac{d}{dx}F_{y'}\right] + \lambda_{0}\left[G_{y} - \frac{d}{dx}G_{y'}\right] = 0$$

Math for Robotics

H. I. Christensen (UCSD)

• So we can utilize

Back to our example

$$egin{aligned} F(x,y,y') &= \sqrt{1+y'^2} & G(x,y,y') = y \ F_y &= 0 & G_y = 1 \ F_{y'} &= rac{y'}{\sqrt{1+y'^2}} & G_{y'} = 0 \end{aligned}$$

• We want to satisfy the differential equation

$$-\frac{d}{dx}\frac{y'}{\sqrt{1+y'^2}} + \lambda_0 = 0$$

• Or

$$\begin{array}{rcl} \frac{y'}{\sqrt{1+y'^2}} &=& \lambda_0 x + c \\ \frac{y'^2}{1+y'^2} &=& (\lambda_0 x + c)^2 \\ y'^2 &=& \frac{(\lambda_0 x + c)^2}{1-(\lambda_0 x + c)^2} \\ y' &=& \pm \frac{\lambda_0 x + c}{\sqrt{1-(\lambda_0 x + c)^2}} \end{array}$$

Oct 2023

Example (cont.)

• We can do the integration

$$y(x) = \pm \int \frac{\lambda_0 x + c}{\sqrt{1 - (\lambda_0 x + c)^2}}$$

substitute $u = \lambda_0 x + c$ and $du = \lambda_0 dx$
$$= \pm \int \frac{u}{\sqrt{1 - u^2}} du = \pm \left[-\sqrt{1 - u^2} + k \right]$$

$$= \pm \left[-\frac{1}{\lambda} \sqrt{1 - (\lambda_0 x + c)^2} - \frac{k}{\lambda_0} \right]$$

• This can be rewritten to

$$\left(y \pm \frac{k}{\lambda_0}\right)^2 + \left(x + \frac{c}{\lambda_0}\right)^2 = \frac{1}{\lambda_0}$$

• That is a circle arc!

H. I. Christensen (UCSD)	Math for Robotics	Oct 2023	24 / 26
Extensions			
RNIA			
 For multiple variable yo 	u can formulate it similar to	the simple case	
• Ex: Shortest path in a	multiple dimensional space		
• Ex: Light ray tracing th	rough non-homogeneous me	edia	

• You would extend Euler's Equation to have more terms

Summary

- Powerful tool for optimization and derivation of analytical models
- Models for airplane wings, elastic membranes
- Important to consider it part of your toolbox

H. I. Christensen (UCSD)

Math for Robotics

Oct 2023