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Introduction

Going a bit more abstract today

Calc of variations is tightly coupled to mechanics

We will only covers the very basics

Entire courses at UCSD – MATH201C
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Applications

Path Optimization

Vibrating membranes

Electrostatics

Machine vision – reconstruction

Vision - image flow, . . .
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Introduction (cont)

We have seen the principle
To minimize P is to solve P’ = 0

So far we have looked at finite dimensional problems
f: Rn ! R

Looking at N numbers to minimize f

In infinite dimensional problems we are considering an continuum

What about functionals - (functions of functions)?
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Example

Suppose we connect two points in the plane (x0, y0) and (x1, y1)
by a curve of the form y = y(x).

The length of the curve can be written

L(y) =

Z x1

x0

q
1 + (y 0)2dx

L is a functional.

Find the shortest curve between the two points.
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Similar problems

Shortest path connecting a non-planar curve, say sphere

Minimal surface of revolution generated by a connected curve

Shortest curve with a given area below it

Closed curve of a given perimeter that encloses the largest area

Shape of a string hanging from two points under gravity

Path of light traveling through an inhomogenous curve
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Euler’s Equation

The principle of
To minimize P is to solve P’ = 0

Rather than solving the integral it is an advantage to consider the di↵erential
equation.

The di↵erential equation is called Euler Equation.

We will derive it shortly
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Consider for a minute

Suppose f : Rn ! R what does it mean for x⇤ to be a local extremum of f?

1 We must have f (x) � f (x⇤
) for every x in some neighborhood

2 A necessary condition rf (x⇤
) = 0 i.e., that

@f
@xi

= 0 for all i.

For P the equivalent would be say
1 P : C 2

(Rn
) ! R and

2 f ! P(f )

what does it mean for f ⇤ to be an extremum of P?
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Optimal functional?

What would be conditional for a functional?
1 We need P(f ) � P(f ⇤) for every functional close to f ⇤

So what is a neighborhood of a function?

2 Need a generalized gradient

P(f ⇤ + �f ) ⇡ P(f ⇤)

Still very hand wavy
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Simplest problem

Lets start with a simple problem

Minimize J(y) =
R x1
x0

F (x , y , y 0)dx with y ,F 2 C 2

Suppose y⇤ minimizes J it would then be true
1 In a neighborhood of y⇤

then J(y) � J(y⇤
)

2 �J = 0 for a variation �y is

�J(y⇤
) = J(y⇤

+ �y)� J(y⇤
)

What are the necessary conditions for this to be valid

H. I. Christensen (UCSD) Math for Robotics Oct 2023 10 / 26

Neighborhood Evaluation

Lets start by showing optimality in a neighborhood

Let y 2 C 2[x0, x1] such that y(x0) = y(x1) = 0

Let ✏ 2 R be a value

Lets consider a one-parameter family of functions

y(x) = y⇤(x) + ✏y(x)

Where y⇤ is the (unknown) optimal function

Define � : R ! R by

�(✏) =

Z x1

x0

F (x , y , y 0)dx

If |✏| is small enough then all variants of y⇤ + ✏y lie in a small neighborhood
of y⇤, therefore � attains a local minimum at ✏ = 0

Thus it must be true that �0(0) = 0
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So what is �0?

We know that

�(✏) =

Z x1

x0

F (x , y , y 0)dx

So it must be true that

�0(✏) =
d

d✏

Z x1

x0

F (x , y , y 0)dx

Given that we have a C 2 domain we can reverse the order of integration and
di↵erentiation, so that

�0(✏) =

Z x1

x0

d

d✏
F (x , y , y 0)dx

or

�0(✏) =

Z x1

x0

✓
@

@y
F (x , y⇤ + ✏y , y⇤0

+ ✏y 0)y +
@

@y 0F (x , y
⇤ + ✏y , y⇤0

+ ✏y 0)y 0
◆
dx

We know that

�0(0) = 0 =

Z x1

x0

✓
@

@y
F (x , y⇤, y⇤0

)y +
@

@y 0F (x , y
⇤, y⇤0

)y 0
◆
dx

H. I. Christensen (UCSD) Math for Robotics Oct 2023 12 / 26

So what is �0?

We know that

�(✏) =

Z x1

x0

F (x , y , y 0)dx

So it must be true that

�0(✏) =
d

d✏

Z x1

x0

F (x , y , y 0)dx

Given that we have a C 2 domain we can reverse the order of integration and
di↵erentiation, so that

�0(✏) =

Z x1

x0

d

d✏
F (x , y , y 0)dx

or

�0(✏) =

Z x1

x0

✓
@

@y
F (x , y⇤ + ✏y , y⇤0

+ ✏y 0)y +
@

@y 0F (x , y
⇤ + ✏y , y⇤0

+ ✏y 0)y 0
◆
dx

We know that

�0(0) = 0 =

Z x1

x0

✓
@

@y
F (x , y⇤, y⇤0

)y +
@

@y 0F (x , y
⇤, y⇤0

)y 0
◆
dx

H. I. Christensen (UCSD) Math for Robotics Oct 2023 12 / 26



Still more �0

We can write this more compactly

�0(0) =

Z x1

x0

(Fyy + Fy 0y 0) dx

Using integration by parts we get
R x1
x0

Fy 0y 0dx = Fy 0y |x1x0 �
R x1
x0

y d
dx Fy 0dx

= �
R x1
x0

y d
dx Fy 0dx

with this we can rewrite

�0(0) =

Z x1

x0


Fy �

d

dx
Fy 0

�
ydx = 0

as this has to apply for any function y it must be true that

Fy �
d

dx
Fy 0 = 0 on [x0, x1]

This is called Euler’s Equation
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Side comment

The Euler Equation is essentially a “directional derivative” in the direction of
y

Going back to earlier - �J is finding a function y⇤ where J is stationary.

We are only considering the basics here.
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Shortest path problem

Remember the initial question of shortest path?

Recall:

L(y) =

Z x1

x0

p
1 + y 02dx

with y0 = y(x0) and y1 = y(x1)

So F (x , y , y 0) =
p

1 + y 02

Fy = 0 and Fy 0 =
y 0

p
1 + y 02

Euler’s Equation reduces to

d

dx

y 0
p
1 + y 02

= 0
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The shortest path?

So
y 0

p
1 + y 02

= c

we can rewrite

y 02 = c2(1 + y 02)
y 0 = ± cp

1�c2
= m just a constant

y 0 = m
y = mx + b

surprise it is the equation for a straight line!
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How about constrained optimization?

Supposed we are supposed to find shortest curve with a fixed area below?

A

x

Y

x x10

(x0,y0) (x1,y1)

The area is given to be A and we have end-points?
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Constrained optimization

Our objective is then to optimize

L(y) =
R x1
x0

p
1 + y 02dx

A =
R x1
x0

ydx

where the second term is our constraint

An instance of a general class of problems called isoperimetric problems
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Isoperimetric problems

The simplified formulation is
Minimize J(y) =

R x1
x0

F (x , y , y 0)dx
Subject to K (y) = c
where K (y) =

R x1
x0

G (x , y , y 0)dx
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Constrained Optimization (cont.)

We can use a combination of variational techniques and Lagrange multipliers
to solve such problems

We can define two functions

�(✏1, ✏2) =
R x1
x0

F (x , y⇤ + ✏1y + ✏2⇠, y⇤0
+ ✏1y 0 + ✏2⇠0)dx

 (✏1, ✏2) =
R x1
x0

G (x , y⇤ + ✏1y + ✏2⇠, y⇤0
+ ✏1y 0 + ✏2⇠0)dx

Here y⇤ is the unknown function and y and ⇠ are two C 2 functions that
vanish at the end-points

So we want to minimize � subject to the constraint  . We know there is a
local minimum at ✏1 = ✏2 = 0
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Constrained Optimization (Cont.)

Using a Lagrange approach we can form the function

E (✏1, ✏2,�) = �(✏1, ✏2) + �( (✏1, ✏2)� c)

At the local minimum - rE = 0

In other words there is a �0 such that

@
✏1
E (0, 0,�0) = 0 @

✏2
E (0, 0,�0) = 0

@
�E (0, 0,�0) = 0
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Constrained Optimization - let’s compute

Interchanging di↵erentiation and integration we get

@

@✏1
E (0, 0,�0) =

Z x1

x0

(Fyy + Fy 0y 0 + �0Gyy + �0Gy 0y 0) dx

We can do integration by parts and as y vanishes at end-points we see that

@

@✏1
E (0, 0,�0) =

Z x1

x0

✓
Fy �

d

dx
Fy 0

�
+ �0


Gy �

d

dx
Gy 0

�◆
ydx

Similarly:

@

@✏2
E (0, 0,�0) =

Z x1

x0

✓
Fy �

d

dx
Fy 0

�
+ �0


Gy �

d

dx
Gy 0

�◆
⇠dx

As before we can conclude

Fy �

d

dx
Fy 0

�
+ �0


Gy �

d

dx
Gy 0

�
= 0
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Back to our example

So we can utilize

F (x , y , y 0) =
p

1 + y 02 G (x , y , y 0) = y
Fy = 0 Gy = 1

Fy 0 = y 0p
1+y 02

Gy 0 = 0

We want to satisfy the di↵erential equation

� d

dx

y 0
p

1 + y 02
+ �0 = 0

Or
y 0p
1+y 02

= �0x + c

y 02

1+y 02 = (�0x + c)2

y 02 = (�0x+c)2

1�(�0x+c)2

y 0 = ± �0x+cp
1�(�0x+c)2
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Example (cont.)

We can do the integration

y(x) = ±
R

�0x+cp
1�(�0x+c)2

substitute u = �0x + c and du = �0dx

= ±
R

up
1�u2 du = ±

h
�
p
1� u2 + k

i

= ±
h
� 1

�

p
1� (�0x + c)2 � k

�0

i

This can be rewritten to

✓
y ± k

�0

◆2

+

✓
x +

c

�0

◆2

=
1

�0

That is a circle arc!
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Extensions

For multiple variable you can formulate it similar to the simple case

Ex: Shortest path in a multiple dimensional space

Ex: Light ray tracing through non-homogeneous media

You would extend Euler’s Equation to have more terms
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Summary

Merely broached calculus of variation

Powerful tool for optimization and derivation of analytical models

Models for airplane wings, elastic membranes

Important to consider it part of your toolbox
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