CSE276C - Calculus of Variation

Henrik I. Christensen

Computer Science and Engineering
University of California, San Diego

October 2023

Introduction

- Going a bit more abstract today
- Calc of variations is tightly coupled to mechanics
- We will only covers the very basics
- Entire courses at UCSD - MATH201C

Applications

- Path Optimization
- Vibrating membranes
- Electrostatics
- Machine vision - reconstruction
- Vision - image flow, ...

Introduction (cont)

- We have seen the principle
- To minimize P is to solve $\mathrm{P}^{\prime}=0$
- So far we have looked at finite dimensional problems
- f: $\mathcal{R}^{n} \rightarrow \mathcal{R}$

Looking at N numbers to minimize f

- In infinite dimensional problems we are considering an continuum
- What about functionals - (functions of functions)?

Example

- Suppose we connect two points in the plane $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ by a curve of the form $y=y(x)$.

- The length of the curve can be written

$$
L(y)=\int_{x_{0}}^{x_{1}} \sqrt{1+\left(y^{\prime}\right)^{2}} d x
$$

L is a functional.

- Find the shortest curve between the two points.

Similar problems

- Shortest path connecting a non-planar curve, say sphere
- Minimal surface of revolution generated by a connected curve
- Shortest curve with a given area below it
- Closed curve of a given perimeter that encloses the largest area
- Shape of a string hanging from two points under gravity
- Path of light traveling through an inhomogenous curve

Euler's Equation

- The principle of
- To minimize P is to solve $\mathrm{P}^{\prime}=0$
- Rather than solving the integral it is an advantage to consider the differential equation.
- The differential equation is called Euler Equation.
- We will derive it shortly

Consider for a minute

- Suppose $f: \mathcal{R}^{n} \rightarrow \mathcal{R}$ what does it mean for x^{*} to be a local extremum of f ?

Consider for a minute

- Suppose $f: \mathcal{R}^{n} \rightarrow \mathcal{R}$ what does it mean for x^{*} to be a local extremum of f ?
(1) We must have $f(x) \geq f\left(x^{*}\right)$ for every x in some neighborhood
(2) A necessary condition $\nabla f\left(x^{*}\right)=0$ i.e., that $\frac{\partial f}{\partial x_{i}}=0$ for all i.
- For P the equivalent would be say
(1) $P: C^{2}\left(\mathcal{R}^{n}\right) \rightarrow \mathcal{R}$ and
(2) $f \rightarrow P(f)$
- what does it mean for f^{*} to be an extremum of P?

Optimal functional?

- What would be conditional for a functional?
(1) We need $P(f) \geq P\left(f^{*}\right)$ for every functional close to f^{*}
- So what is a neighborhood of a function?
(2) Need a generalized gradient

$$
P\left(f^{*}+\delta f\right) \approx P\left(f^{*}\right)
$$

- Still very hand wavy

Simplest problem

- Lets start with a simple problem
- Minimize $J(y)=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x$ with $y, F \in C^{2}$
- Suppose y^{*} minimizes J it would then be true
(1) In a neighborhood of y^{*} then $J(y) \geq J\left(y^{*}\right)$
(2) $\delta J=0$ for a variation δy is

$$
\delta J\left(y^{*}\right)=J\left(y^{*}+\delta y\right)-J\left(y^{*}\right)
$$

- What are the necessary conditions for this to be valid

Neighborhood Evaluation

- Lets start by showing optimality in a neighborhood
- Let $y \in C^{2}\left[x_{0}, x_{1}\right]$ such that $y\left(x_{0}\right)=y\left(x_{1}\right)=0$
- Let $\epsilon \in \mathcal{R}$ be a value
- Lets consider a one-parameter family of functions

$$
y(x)=y^{*}(x)+\epsilon y(x)
$$

- Where y^{*} is the (unknown) optimal function
- Define $\Phi: \mathcal{R} \rightarrow \mathcal{R}$ by

$$
\Phi(\epsilon)=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x
$$

- If $|\epsilon|$ is small enough then all variants of $y^{*}+\epsilon y$ lie in a small neighborhood of y^{*}, therefore Φ attains a local minimum at $\epsilon=0$
- Thus it must be true that $\Phi^{\prime}(0)=0$

So what is ϕ^{\prime} ?

- We know that

$$
\Phi(\epsilon)=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x
$$

- So it must be true that

$$
\Phi^{\prime}(\epsilon)=\frac{d}{d \epsilon} \int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x
$$

- Given that we have a C^{2} domain we can reverse the order of integration and differentiation, so that

$$
\Phi^{\prime}(\epsilon)=\int_{x_{0}}^{x_{1}} \frac{d}{d \epsilon} F\left(x, y, y^{\prime}\right) d x
$$

So what is ϕ^{\prime} ?

- We know that

$$
\Phi(\epsilon)=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x
$$

- So it must be true that

$$
\Phi^{\prime}(\epsilon)=\frac{d}{d \epsilon} \int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x
$$

- Given that we have a C^{2} domain we can reverse the order of integration and differentiation, so that

$$
\Phi^{\prime}(\epsilon)=\int_{x_{0}}^{x_{1}} \frac{d}{d \epsilon} F\left(x, y, y^{\prime}\right) d x
$$

or
$\Phi^{\prime}(\epsilon)=\int_{x_{0}}^{x_{1}}\left(\frac{\partial}{\partial y} F\left(x, y^{*}+\epsilon y, y^{*^{\prime}}+\epsilon y^{\prime}\right) y+\frac{\partial}{\partial y^{\prime}} F\left(x, y^{*}+\epsilon y, y^{*^{\prime}}+\epsilon y^{\prime}\right) y^{\prime}\right) d x$

- We know that

$$
\Phi^{\prime}(0)=0=\int_{x_{0}}^{x_{1}}\left(\frac{\partial}{\partial y} F\left(x, y^{*}, y^{*^{\prime}}\right) y+\frac{\partial}{\partial y^{\prime}} F\left(x, y^{*}, y^{*^{\prime}}\right) y^{\prime}\right) d x
$$

Still more ϕ^{\prime}

- We can write this more compactly

$$
\Phi^{\prime}(0)=\int_{x_{0}}^{x_{1}}\left(F_{y} y+F_{y^{\prime}} y^{\prime}\right) d x
$$

- Using integration by parts we get

$$
\begin{aligned}
\int_{x_{0}}^{x_{1}} F_{y^{\prime}} y^{\prime} d x & =F_{y^{\prime}} y| |_{x_{0}}^{x_{1}}-\int_{x_{0}}^{x_{1}} y \frac{d}{d x} F_{y^{\prime}} d x \\
& =-\int_{x_{0}}^{x_{1}} y \frac{d}{d x} F_{y^{\prime}} d x
\end{aligned}
$$

with this we can rewrite

$$
\Phi^{\prime}(0)=\int_{x_{0}}^{x_{1}}\left[F_{y}-\frac{d}{d x} F_{y^{\prime}}\right] y d x=0
$$

as this has to apply for any function y it must be true that

$$
F_{y}-\frac{d}{d x} F_{y^{\prime}}=0 \text { on }\left[x_{0}, x_{1}\right]
$$

- This is called Euler's Equation

Side comment

- The Euler Equation is essentially a "directional derivative" in the direction of y
- Going back to earlier $-\delta J$ is finding a function y^{*} where J is stationary.
- We are only considering the basics here.

Shortest path problem

- Remember the initial question of shortest path?
- Recall:

$$
L(y)=\int_{x_{0}}^{x_{1}} \sqrt{1+y^{\prime 2}} d x
$$

with $y_{0}=y\left(x_{0}\right)$ and $y_{1}=y\left(x_{1}\right)$

- So $F\left(x, y, y^{\prime}\right)=\sqrt{1+y^{\prime 2}}$

$$
F_{y}=0 \text { and } F_{y^{\prime}}=\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}
$$

- Euler's Equation reduces to

$$
\frac{d}{d x} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=0
$$

The shortest path?

- So

$$
\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=c
$$

- we can rewrite

$$
\begin{aligned}
y^{\prime 2} & =c^{2}\left(1+y^{\prime 2}\right) \\
y^{\prime} & = \pm \frac{c}{\sqrt{1-c^{2}}}=m \text { just a constant } \\
y^{\prime} & =m \\
y & =m x+b
\end{aligned}
$$

surprise it is the equation for a straight line!

How about constrained optimization?

- Supposed we are supposed to find shortest curve with a fixed area below?

- The area is given to be A and we have end-points?

Constrained optimization

- Our objective is then to optimize

$$
\begin{aligned}
L(y) & =\int_{x_{0}}^{x_{1}} \sqrt{1+y^{\prime 2}} d x \\
A & =\int_{x_{0}}^{x_{1}} y d x
\end{aligned}
$$

- where the second term is our constraint
- An instance of a general class of problems called isoperimetric problems

Isoperimetric problems

- The simplified formulation is

$$
\begin{array}{ll}
\text { Minimize } & J(y)=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x \\
\text { Subject to } & K(y)=c \\
\text { where } & K(y)=\int_{x_{0}}^{x_{1}} G\left(x, y, y^{\prime}\right) d x
\end{array}
$$

Constrained Optimization (cont.)

- We can use a combination of variational techniques and Lagrange multipliers to solve such problems
- We can define two functions

$$
\begin{aligned}
\Phi\left(\epsilon_{1}, \epsilon_{2}\right) & =\int_{x_{0}}^{x_{1}} F\left(x, y^{*}+\epsilon_{1} y+\epsilon_{2} \xi, y^{*^{\prime}}+\epsilon_{1} y^{\prime}+\epsilon_{2} \xi^{\prime}\right) d x \\
\Psi\left(\epsilon_{1}, \epsilon_{2}\right) & =\int_{x_{0}}^{x_{1}} G\left(x, y^{*}+\epsilon_{1} y+\epsilon_{2} \xi, y^{*^{\prime}}+\epsilon_{1} y^{\prime}+\epsilon_{2} \xi^{\prime}\right) d x
\end{aligned}
$$

- Here y^{*} is the unknown function and y and ξ are two C^{2} functions that vanish at the end-points
- So we want to minimize Φ subject to the constraint Ψ. We know there is a local minimum at $\epsilon_{1}=\epsilon_{2}=0$

Constrained Optimization (Cont.)

- Using a Lagrange approach we can form the function

$$
E\left(\epsilon_{1}, \epsilon_{2}, \lambda\right)=\Phi\left(\epsilon_{1}, \epsilon_{2}\right)+\lambda\left(\Psi\left(\epsilon_{1}, \epsilon_{2}\right)-c\right)
$$

- At the local minimum - $\nabla E=0$
- In other words there is a λ_{0} such that

$$
\begin{aligned}
& \frac{\partial}{\epsilon_{1}} E\left(0,0, \lambda_{0}\right)=0 \quad \frac{\partial}{\epsilon_{2}} E\left(0,0, \lambda_{0}\right)=0 \\
& \frac{\partial}{\lambda} E\left(0,0, \lambda_{0}\right)=0
\end{aligned}
$$

Constrained Optimization - let's compute

- Interchanging differentiation and integration we get

$$
\frac{\partial}{\partial \epsilon_{1}} E\left(0,0, \lambda_{0}\right)=\int_{x_{0}}^{x_{1}}\left(F_{y} y+F_{y^{\prime}} y^{\prime}+\lambda_{0} G_{y} y+\lambda_{0} G_{y^{\prime}} y^{\prime}\right) d x
$$

Constrained Optimization - let's compute

- Interchanging differentiation and integration we get

$$
\frac{\partial}{\partial \epsilon_{1}} E\left(0,0, \lambda_{0}\right)=\int_{x_{0}}^{x_{1}}\left(F_{y} y+F_{y^{\prime}} y^{\prime}+\lambda_{0} G_{y} y+\lambda_{0} G_{y^{\prime}} y^{\prime}\right) d x
$$

- We can do integration by parts and as y vanishes at end-points we see that

$$
\frac{\partial}{\partial \epsilon_{1}} E\left(0,0, \lambda_{0}\right)=\int_{x_{0}}^{x_{1}}\left(\left[F_{y}-\frac{d}{d x} F_{y^{\prime}}\right]+\lambda_{0}\left[G_{y}-\frac{d}{d x} G_{y^{\prime}}\right]\right) y d x
$$

Constrained Optimization - let's compute

- Interchanging differentiation and integration we get

$$
\frac{\partial}{\partial \epsilon_{1}} E\left(0,0, \lambda_{0}\right)=\int_{x_{0}}^{x_{1}}\left(F_{y} y+F_{y^{\prime}} y^{\prime}+\lambda_{0} G_{y} y+\lambda_{0} G_{y^{\prime}} y^{\prime}\right) d x
$$

- We can do integration by parts and as y vanishes at end-points we see that

$$
\frac{\partial}{\partial \epsilon_{1}} E\left(0,0, \lambda_{0}\right)=\int_{x_{0}}^{x_{1}}\left(\left[F_{y}-\frac{d}{d x} F_{y^{\prime}}\right]+\lambda_{0}\left[G_{y}-\frac{d}{d x} G_{y^{\prime}}\right]\right) y d x
$$

- Similarly:

$$
\frac{\partial}{\partial \epsilon_{2}} E\left(0,0, \lambda_{0}\right)=\int_{x_{0}}^{x_{1}}\left(\left[F_{y}-\frac{d}{d x} F_{y^{\prime}}\right]+\lambda_{0}\left[G_{y}-\frac{d}{d x} G_{y^{\prime}}\right]\right) \xi d x
$$

Constrained Optimization - let's compute

- Interchanging differentiation and integration we get

$$
\frac{\partial}{\partial \epsilon_{1}} E\left(0,0, \lambda_{0}\right)=\int_{x_{0}}^{x_{1}}\left(F_{y} y+F_{y^{\prime}} y^{\prime}+\lambda_{0} G_{y} y+\lambda_{0} G_{y^{\prime}} y^{\prime}\right) d x
$$

- We can do integration by parts and as y vanishes at end-points we see that

$$
\frac{\partial}{\partial \epsilon_{1}} E\left(0,0, \lambda_{0}\right)=\int_{x_{0}}^{x_{1}}\left(\left[F_{y}-\frac{d}{d x} F_{y^{\prime}}\right]+\lambda_{0}\left[G_{y}-\frac{d}{d x} G_{y^{\prime}}\right]\right) y d x
$$

- Similarly:

$$
\frac{\partial}{\partial \epsilon_{2}} E\left(0,0, \lambda_{0}\right)=\int_{x_{0}}^{x_{1}}\left(\left[F_{y}-\frac{d}{d x} F_{y^{\prime}}\right]+\lambda_{0}\left[G_{y}-\frac{d}{d x} G_{y^{\prime}}\right]\right) \xi d x
$$

- As before we can conclude

$$
\left[F_{y}-\frac{d}{d x} F_{y^{\prime}}\right]+\lambda_{0}\left[G_{y}-\frac{d}{d x} G_{y^{\prime}}\right]=0
$$

Back to our example

- So we can utilize

$$
\begin{aligned}
F\left(x, y, y^{\prime}\right) & =\sqrt{1+y^{\prime 2}} & G\left(x, y, y^{\prime}\right)=y \\
F_{y} & =0 & G_{y}=1 \\
F_{y^{\prime}} & =\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}} & G_{y^{\prime}}=0
\end{aligned}
$$

- We want to satisfy the differential equation

$$
-\frac{d}{d x} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}+\lambda_{0}=0
$$

- Or

$$
\begin{aligned}
\frac{y^{\prime}}{\sqrt{1+y^{\prime \prime}}} & =\lambda_{0} x+c \\
\frac{y^{\prime 2}}{1+y^{\prime 2}} & =\left(\lambda_{0} x+c\right)^{2} \\
y^{\prime 2} & =\frac{\left(\lambda_{0}+c\right)^{2}}{1-\left(\lambda_{0} x+c\right)^{2}} \\
y^{\prime} & = \pm \frac{\lambda_{0} x+c}{\sqrt{1-\left(\lambda_{0} x+c\right)^{2}}}
\end{aligned}
$$

Example (cont.)

- We can do the integration

$$
\begin{aligned}
y(x)= & \pm \int \frac{\lambda_{0} x+c}{\sqrt{1-\left(\lambda_{0} x+c\right)^{2}}} \\
& \text { substitute } u=\lambda_{0} x+c \text { and } d u=\lambda_{0} d x \\
= & \pm \int \frac{u}{\sqrt{1-u^{2}}} d u= \pm\left[-\sqrt{1-u^{2}}+k\right] \\
= & \pm\left[-\frac{1}{\lambda} \sqrt{1-\left(\lambda_{0} x+c\right)^{2}}-\frac{k}{\lambda_{0}}\right]
\end{aligned}
$$

- This can be rewritten to

$$
\left(y \pm \frac{k}{\lambda_{0}}\right)^{2}+\left(x+\frac{c}{\lambda_{0}}\right)^{2}=\frac{1}{\lambda_{0}}
$$

- That is a circle arc!

Extensions

- For multiple variable you can formulate it similar to the simple case
- Ex: Shortest path in a multiple dimensional space
- Ex: Light ray tracing through non-homogeneous media
- You would extend Euler's Equation to have more terms

Summary

- Merely broached calculus of variation
- Powerful tool for optimization and derivation of analytical models
- Models for airplane wings, elastic membranes
- Important to consider it part of your toolbox

