Robotic Motion Planning: Configuration Space

Henrik I Christensen
Adopted from Howie Choset
http://www.cs.cmu.edu/~choset

What if the robot is not a point?

What is the position of the robot?

Configuration Space

- A key concept for motion planning is a configuration:
- a complete specification of the position of every point in the system
- A simple example: a robot that translates but does not rotate in the plane:
- what is a sufficient representation of its configuration?
- The space of all configurations is the configuration space or Cspace.

Lozano-Perez ‘79

Robot Manipulators

What are this arm's forward kinematics?
(How does its position

depend on its joint angles?)

Robot Manipulators

What are this arm's forward kinematics?

Find (x, y) in terms of α and β...

$$
\begin{gathered}
\text { Keeping it "simple" } \\
\mathrm{c}_{\alpha}=\cos (\alpha), \mathrm{s}_{\alpha}=\sin (\alpha) \\
\mathrm{c}_{\beta}=\cos (\beta), \mathrm{s}_{\beta}=\sin (\beta) \\
\mathrm{c}_{+}=\cos (\alpha+\beta), \mathrm{s}_{+}=\sin (\alpha+\beta)
\end{gathered}
$$

Manipulator kinematics

$$
\binom{\mathrm{x}}{\mathrm{y}}=\binom{\mathrm{L}_{1} \mathrm{c}_{\alpha}}{\mathrm{L}_{1} \mathrm{~s}_{\alpha}}+\binom{\mathrm{L}_{2} \mathrm{c}_{+}}{\mathrm{L}_{2} \mathrm{~s}_{+}} \text {Position }
$$

$$
\begin{gathered}
\text { Keeping it "simple" } \\
\mathrm{c}_{\alpha}=\cos (\alpha), \mathrm{s}_{\alpha}=\sin (\alpha) \\
\mathrm{c}_{\beta}=\cos (\beta), \mathrm{s}_{\beta}=\sin (\beta) \\
\mathrm{c}_{+}=\cos (\alpha+\beta), \mathrm{s}_{+}=\sin (\alpha+\beta)
\end{gathered}
$$

Inverse Kinematics

Inverse kinematics -- finding joint angles from Cartesian coordinates via a geometric or algebraic approach...

Given (x, y) and L_{1} and L_{2}, what are the values of α, β, γ ? 16-735, Howie Choset with silides from G.D. Hager, Z. Dodds, and Dinesh Miocha

Inverse Kinematics

Inverse kinematics -- finding joint angles from Cartesian coordinates
via a geometric or algebraic approach...

$$
\begin{aligned}
& \gamma=\cos ^{-1}\left(\frac{x^{2}+y^{2}-L_{1}^{2}-L_{2}^{2}}{2 L_{1} L_{2}}\right) \\
& \beta=180-\gamma \\
& \alpha=\sin ^{-1}\left(\frac{L_{2} \sin (\gamma)}{x^{2}+y^{2}}\right)+\tan ^{-1}(y / x)
\end{aligned}
$$

$$
(1,0)=1.3183,-1.06
$$

$$
(-1,0)=1.3183,4.45
$$

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and DineshiMochat usually this ugly...

theta $(1)=\operatorname{atan} 2(P y, P x)+\operatorname{asin}(d 3 / r)$;
else
theta $(1)=\operatorname{atan} 2(P y, P x)+p i-\operatorname{asin}(d 3 / r) ;$
end
$\%$
\% Solve for theta(2)
V114= Px*cos(theta(1)) + Py*sin(theta(1));
r=sqrt(V114^2 $+\mathrm{Pz}^{\wedge} 2$);
Psi $=\operatorname{acos}\left(\left(a 2^{\wedge} 2-d 4^{\wedge} 2-a 3^{\wedge} 2+V 114^{\wedge} 2+P z^{\wedge} 2\right) /\right.$
(2.0*a2*r));
theta (2) $=\operatorname{atan} 2(\mathrm{Pz}, \mathrm{V} 114)+\mathrm{n} 2 *$ Psi;
\%
\% Solve for theta(3)
num $=\cos ($ theta (2)) *V114+sin(theta (2)) *Pz-a2; den $=\cos ($ theta $(2)) * P z-\sin ($ theta $(2)) * V 114 ;$ theta (3) $=a \tan 2(a 3, d 4)-a \tan 2(n u m, d e n) ;$

Inv. Kinematics

```
\% Solve for theta (4)
V113 \(=\cos (\) theta (1)) *Ax \(+\sin (\) theta (1)) *Ay;
\(\mathrm{V} 323=\cos (\) theta (1)) *Ay \(-\sin (\) theta (1)) *Ax;
\(\mathrm{v} 313=\cos (\) theta (2) +theta (3) ) *V113 +
\(\sin (\) theta (2) +theta (3)) *Az;
theta \((4)=a \tan 2((n 4 * V 323),(n 4 * V 313))\);
\% Solve for theta(5)
num \(=-\cos (\) theta (4)) *V313 - V323*sin(theta (4));
den \(=-\mathrm{V} 113 * \sin (\) theta \((2)+\) theta (3)) +
Az*cos (theta (2) +theta (3)) ;
theta (5) \(=a \tan 2\) (num,den) ;
```

\% Solve for theta (6)
V112 $=\cos ($ theta (1)) $* O x+\sin ($ theta (1)) $* O y$;
V132 $=\sin ($ theta (1)) *Ox $-\cos ($ theta (1)) *Oy;
$\mathrm{V} 312=\mathrm{V} 112^{*} \cos ($ theta $(2)+$ theta $(3))+$
Oz *sin (theta (2) +theta (3));
V332 $=-\mathrm{V} 112 * \sin ($ theta $(2)+$ theta (3) $)+$ Oz * $\cos ($ theta (2) + theta (3)) ;
$\mathrm{V} 412=\mathrm{V} 312 * \cos ($ theta (4)) $-\mathrm{V} 132 * \sin ($ theta (4)) ; $\mathrm{V} 432=\mathrm{V} 312 * \sin ($ theta (4)) $+\mathrm{V} 132 * \cos ($ theta (4)); num $=-\mathrm{V} 412 * \cos ($ theta (5)) $-\mathrm{V} 332 * \sin ($ theta (5)) ; den $=-\mathrm{V} 432$;
theta (6) $=a \tan 2$ (num, den) ;

Some Other Examples of C-Space

- A rotating bar fixed at a point
- what is its C-space?
- what is its workspace
- A rotating bar that translates along the rotation axis
- what is its C-space?
- what is its workspace
- A two-link manipulator
- what is its C-space?
- what is its workspace?
- Suppose there are joint limits, does this change the C-space?
- The workspace?

Configuration Space

Obstacles in C-Space

- Let q denote a point in a configuration space Q
- The path planning problem is to find a mapping c:[0,1] \rightarrow Q s.t. no configuration along the path intersects an obstacle
- Recall a workspace obstacle is $W O_{i}$
- A configuration space obstacle $Q O_{i}$ is the set of configurations q at which the robot intersects $W O_{i}$, that is

$$
-\mathcal{Q O}_{i}=\left\{q \in \mathcal{Q} \mid R(q) \bigcap \mathcal{W O}_{i} \neq \emptyset\right\}
$$

- The free configuration space (or just free space) $\mathcal{Q}_{\text {free }}$ is

$$
\mathcal{Q}_{\text {free }}=\mathcal{Q} \backslash\left(\bigcup \mathcal{Q} \mathcal{O}_{i}\right) .
$$

The free space is generally an open set
A free path is a mapping c: $[0,1] \rightarrow Q_{\text {free }}$
A semifree path is a mapping $\mathrm{c}:[0,1] \rightarrow \mathrm{Cl}\left(Q_{\text {free }}\right)$
16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Disc in 2-D workspace

configuration space

Example of a World (and Robot)

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Configuration Space: Accommodate Rooba sze

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Trace Boundary of Workspace

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Polygonal robot translating in 2-D workspace

Polygonal robot translating \& rotating in 2-D workspace

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Any reference point

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Any reference point configuration

Taking the cross section of configuration space in which the robot is rotated 45 degrees...

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, an

Any reference peint configuration

Taking the cross section of configuration space in which the robot is rotated 45 degrees...

Minkowski sum

- The Minkowski sum of two sets P and Q, denoted by $P \oplus Q$, is defined as

$$
P \oplus Q=\{p+q \mid p \in P, q \in Q\}
$$

- Similarly, the Minkowski difference is defined as

$$
P \ominus Q=\{p-q \mid p \in P, q \in Q\}
$$

Minkowski sum of convex polygons

- The Minkowski sum of two convex polygons P and Q of m and n vertices respectively is a convex polygon $P \oplus Q$ of $m+n$ vertices.
- The vertices of $P \oplus Q$ are the "sums" of vertices of P and Q.

Observation

- If P is an obstacle in the workspace and M is a moving object. Then the C-space obstacle corresponding to P is $P \ominus M$.

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Star Algorithm: Polygonal Obstacles

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Configuration Space "Quiz"

Configuration Space Obstacle

Reference configuration

An obstacle in the robot's workspace

How do we get from A to B ?

The C-space representation of this obstacle...

Two Link Path

Two Link Path

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Properties of Obstacles in C-Space

- If the robot and $W O_{i}$ are \qquad , then
- Convex then $Q O_{i}$ is convex
- Closed then $Q O_{i}$ is closed
- Compact then $Q O_{i}$ is compact
- Algebraic then $Q O_{i}$ is algebraic
- Connected then QO_{i} is connected

Additional dimensions

What would the configuration space of a rectangular robot (red) in this world look like?
Assume it can translate and rotate in the plane.
(The blue rectangle is an obstacle.)

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

a 2d possibility

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Merchæot keep it this simple?

A problem?

Requires one more d...

When the robot is at one orientation

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

When the robot is at another orientation

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Additional dimensions

What would the configuration space of a
rectangular robot (red) in this world look like?
(The obstacle is blue.)
configuration space

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha this is twisted...

Polygonal robot translating \& rotating in 2-D workspace

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

SE(2)

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

2D Rigid Object

The Configuration Space (C-space)

TOP
VIEW

workspace
16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Moving a Piano

Configuration Space (C-space)

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

2R manipulator
(a)

Configuration space

Why study the Topology

- Extend results from one space to another: spheres to stars
- Impact the representation
- Know where you are
- Others?

The Topology of Configuration Space

- Topology is the "intrinsic character" of a space
- Two space have a different topology if cutting and pasting is required to make them the same (e.g. a sheet of paper vs. a mobius strip)
- think of rubber figures --- if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology
- A basic mathematical mechanism for talking about topology is the homeomorphism.

Homeo- and Diffeomorphisms

- Recall mappings:
- \quad : $\mathrm{S} \rightarrow \mathrm{T}$
- If each elements of ϕ goes to a unique T, ϕ is injective (or 1-1)
- If each element of T has a corresponding preimage in S , then ϕ is surjective (or onto).
- If ϕ is surjective and injective, then it is bijective (in which case an inverse, ϕ^{-1} exists).
- $\quad \phi$ is smooth if derivatives of all orders exist (we say ϕ is C^{∞})
- If $\phi: S \rightarrow T$ is a bijection, and both ϕ and ϕ^{-1} are continuous, ϕ is a homeomorphism; if such a ϕ exists, S and T are homeomorphic.
- If homeomorphism where both ϕ and ϕ^{-1} are smooth is a diffeomorphism.

Some Examples

- How would you show a square and a rectangle are diffeomorphic?
- How would you show that a circle and an ellipse are diffeomorphic (implies both are topologically S^{1})
- Interestingly, a "racetrack" is not diffeomorphic to a circle
- composed of two straight segments and two circular segments
- at the junctions, there is a discontinuity; it is therefore not possible to construct a smooth map!
- How would you show this (hint, do this for a function on \mathfrak{R}^{1} and think about the chain rule)
- Is it homeomorphic?

Local Properties

$$
\begin{aligned}
& B_{\epsilon}(p)=\left\{p^{\prime} \in \mathcal{M} \mid d\left(p, p^{\prime}\right)<\epsilon\right\} \quad \text { Ball } \\
& p \in \mathcal{M} \quad \mathcal{U} \subseteq \mathcal{M} \text { with } p \in \mathcal{U} \text { such that for every } p^{\prime} \in \mathcal{U}, \quad B_{\epsilon} \overline{\left(p^{\prime}\right)} \subset \mathcal{U} \text {. Neighborhood }
\end{aligned}
$$

Manifolds

- A space S locally diffeomorphic (homeomorphic) to a space T if each $p \in S$ there is a neighborhood containing it for which a diffeomorphism (homeomorphism) to some neighborhood of T exists.
- S^{1} is locally diffeomorphic to \mathfrak{R}^{1}
- The sphere is locally diffeomorphic to the plane (as is the torus)
- A set S is a k-dimensional manifold if it is locally homeomorphic to $\mathfrak{R}^{\mathrm{k}}$

Charts and Differentiable Manifolds

- A Chart is a pair (U, ϕ) such that U is an open set in a k-dimensional manifold and ϕ is a diffeomorphism from U to some open set in \mathfrak{R}^{k}
- think of this as a "coordinate system" for U (e.g. lines of latitude and longitude away form the poles).
- The inverse map is a parameterization of the manifold
- Many manifolds require more than one chart to cover (e.g. the circle requires at least 2)
- An atlas is a set of charts that
- cover a manifold
- are smooth where they overlap (the book defines the notion of C^{∞} related for this; we will take this for granted).
- A set S is a differentiable manifold of dimension n if there exists an atlas from S to \mathfrak{R}^{n}
- For example, this is what allows us (locally) to view the (spherical) earth as flat and talk about translational velocities upon it.

Some Minor Notational Points

- $\mathfrak{R}^{1} \times \mathfrak{R}^{1} \times \ldots \times \mathfrak{R}^{1}=\mathfrak{R}^{n}$
- $\mathrm{S}^{1} \times \mathrm{S}^{1} \times \ldots \times \mathrm{S}^{1} \neq \mathrm{S}^{n}$ (= T^{n}, the n -dimensional torus)
- S^{n} is the n -dimensional sphere
- Although S^{n} is an n -dimensional manifold, it is not a manifold of a single chart --- there is no single, smooth, invertible mapping from S^{n} to R^{n}---
- they are not ??morphic?

Examples

Type of robot	Representation of \mathcal{Q}
Mobile robot translating in the plane	\mathbb{R}^{2}
Mobile robot translating and rotating in the plane	$S E(2)$ or $\mathbb{R}^{2} \times S^{1}$
Rigid body translating in the three-space	\mathbb{R}^{3}
A spacecraft	$S E(3)$ or $\mathbb{R}^{3} \times S O(3)$
An n-joint revolute arm	T^{n}
A planar mobile robot with an attached n-joint arm	$S E(2) \times T^{n}$

$S^{1} \times S^{1} \times \ldots \times S^{1}(n$ times $)=T^{n}$, the n-dimensional torus
$S^{1} \times S^{1} \times \ldots \times S^{1}(n$ times $) \neq S^{n}$, the n-dimensional sphere in \mathbb{R}^{n+1}
$S^{1} \times S^{1} \times S^{1} \neq S O(3)$
$S E(2) \neq \mathbb{R}^{3}$
$S E(3) \neq \mathbb{R}^{6}$

What is the Dimension of Configuration Space?

- The dimension is the number of parameter necessary to uniquely specify configuration
- One way to do this is to explicitly generate a parameterization (e.g with our 2-bar linkage)
- Another is to start with too many parameters and add (independent) constraints
- suppose I start with 4 points in the plane (= 8 parameters), A, B, C, D
- Rigidity requires $d(A, B)=c_{1}$ (1 constraints)
- Rigidity requires $d(A, C)=c_{2}$ and $d(B, C)=c_{3}$ (2 constraints)
- Rigidity requires $\mathrm{d}(\mathrm{A}, \mathrm{D})=\mathrm{c}_{4}$ and $\mathrm{d}(\mathrm{B}, \mathrm{D})=\mathrm{C}_{5}$ and ??? (?? constraints)
- HOW MANY D.O.F?
- QUIZ:
- HOW MANY DOF DO YOU NEED TO MOVE FREELY IN 3-space?

What is the Dimension of Configuration Space?

- The dimension is the number of parameter necessary to uniquely specify configuration
- One way to do this is to explicitly generate a parameterization (e.g with our 2-bar linkage)
- Another is to start with too many parameters and add (independent) constraints
- suppose I start with 4 points in the plane (= 8 parameters), A, B, C, D
- Now, require $\|A-B\|=c_{1}$ and $\|C-D\|=c_{2}$ (2 constraints)
- Now, require $B=C \quad$ (? constraints)
- Now, fix A = 0 (? constraints)
- HOW MANY D.O.F?
- QUIZ:
- HOW MANY DOF DO YOU NEED TO MOVE FREELY IN 3-space?
- $3+3$
- HOW MANY in 4-space?

More on dimension

\mathbb{R}^{1} and $S O(2)$ are one-dimensional manifolds;
\mathbb{R}^{2}, S^{2} and T^{2} are two-dimensional manifolds;
$\mathbb{R}^{3}, S E(2)$ and $S O(3)$ are three-dimensional manifolds;
\mathbb{R}^{6}, T^{6} and $S E(3)$ are six-dimensional manifolds.

More Example Configuration Spaces (contrasted with workspace)

- Holonomic robot in plane:
- workspace \mathfrak{R}^{2}
- configuration space \mathfrak{R}^{2}
- 3-joint revolute arm in the plane
- Workspace, a torus of outer radius L1 + L2 + L3
- configuration space T^{3}
- 2-joint revolute arm with a prismatic joint in the plane
- workspace disc of radius L1 + L2 + L3
- configuration space T2 $\times \mathfrak{R}$
- 3-joint revolute arm mounted on a mobile robot (holonomic)
- workspace is a "sandwich" of radius L1 + L2 + L3
$\square \mathfrak{R}^{2} \times \mathrm{T}^{3}$
- 3-joint revolute arm floating in space
- workspace is \mathfrak{R}^{3}
- configuration space is T^{3}

Parameterization of Torus

(a)

(b)

2d Manifolds

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Representing Rotations

- Consider S^{1}--- rotation in the plane
- The action of a rotation is to, well, rotate --> $\mathrm{R}_{\theta}: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2}$
- We can represent this action by a matrix R that is applied (through matrix multiplication) to points in \mathfrak{R}^{2}

$$
\begin{array}{lr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}
$$

- Note, we can either think of rotating a point through an angle, or rotate the coordinate system (or frame) of the point.

Geometric Transforms

Now, using the idea of homogeneous transforms, we can write:

$$
p^{\prime}=\left(\begin{array}{ccc}
& R & T \\
0 & 0 & 1
\end{array}\right) p
$$

The group of rigid body rotations $\mathrm{SO}(2) \times \mathfrak{R}(2)$ is denoted SE(2) (for special Euclidean group)

$$
R=\left[\begin{array}{ll}
\tilde{x}_{1} & \tilde{y}_{1} \\
\tilde{x}_{2} & \tilde{y}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \in S O(2)
$$

This space is a type of torus

From 2D to 3D Rotation

- I can think of a 3D rotation as a rotation about different axes:
$-\operatorname{rot}(x, \theta) \operatorname{rot}(y, \theta) \operatorname{rot}(z, \theta)$
- there are many conventions for these (see Appendix E)
- Euler angles (ZYZ) --- where is the singularity (see eqn 3.8)
- Roll Pitch Yaw (ZYX)
- Angle axis
- Quaternion
- The space of rotation matrices has its own special name: $\mathrm{SO}(\mathrm{n})$ (for special orthogonal group of dimension n). It is a manifold of dimension n

$$
R=\left[\begin{array}{lll}
\tilde{x}_{1} & \tilde{y}_{1} & \tilde{z}_{1} \\
\tilde{x}_{2} & \tilde{y}_{2} & \tilde{z}_{2} \\
\tilde{x}_{3} & \tilde{y}_{3} & z_{3}
\end{array}\right]=\left[\begin{array}{lll}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{array}\right] \in S O(3)
$$

- What is the derivative of a rotation matrix?

Geometric Transforms

Now, using the idea of homogeneous transforms, we can write:

$$
p^{\prime}=\left(\begin{array}{ccc}
& R & \\
& 0 & \\
0 & 0 & 0
\end{array} 1\right) p
$$

The group of rigid body rotations $\mathrm{SO}(3) \times \mathfrak{R}(3)$ is denoted SE(3) (for special Euclidean group)

$$
S E(n) \equiv\left[\begin{array}{cc}
S O(n) & \mathbb{R}^{n} \\
0 & 1
\end{array}\right]
$$

What does the inverse transformation look like?

Transforming Velocity

- Recall forward kinematics $\mathrm{K}: \mathrm{Q} \rightarrow$ W
- The Jacobian of K is the $\mathrm{n} \times \mathrm{m}$ matrix with entries
$-J_{i, j}=d K_{i} / d q_{j}$
- The Jacobian transforms velocities:
- dw/dt = Jdq/dt

$$
\binom{\mathrm{x}}{\mathrm{y}}=\binom{\mathrm{L}_{1} \mathrm{c}_{\alpha}}{\mathrm{L}_{1} \mathrm{~s}_{\alpha}}+\left(\begin{array}{c}
\mathrm{L}_{2} \mathrm{c}_{\alpha+\beta} \\
\mathrm{L}_{2} \mathrm{~s}_{\alpha+\beta}
\end{array}\right.
$$

- If square and invertible, then
$-d q / d t=J^{-1} d w / d t$
- Example: our favorite two-link arm...

A Useful Observation

- The Jacobian maps configuration velocities to workspace velocities
- Suppose we wish to move from a point A to a point B in the workspace along a path $p(t)$ (a mapping from some time index to a location in the workspace)
- dp/dt gives us a velocity profile --- how do we get the configuration profile?
- Are the paths the same if choose the shortest paths in workspace and configuration space?

Summary

- Configuration spaces, workspaces, and some basic ideas about topology
- Types of robots: holonomic/nonholonomic, serial, parallel
- Kinematics and inverse kinematics
- Coordinate frames and coordinate transformations
- Jacobians and velocity relationships
T. Lozano-Pérez.

Spatial planning: A configuration space approach.
IEEE Transactions on Computing, C-32(2):108-120, 1983

A Few Final Definitions

- A manifold is path-connected if there is a path between any two points.
- A space is compact if it is closed and bounded
- configuration space might be either depending on how we model things
- compact and non-compact spaces cannot be diffeomorphic!
- With this, we see that for manifolds, we can
- live with "global" parameterizations that introduce odd singularities (e.g. angle/elevation on a sphere)
- use atlases
- embed in a higher-dimensional space using constraints
- Some prefer the later as it often avoids the complexities associated with singularities and/or multiple overlapping maps

