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TA hours: Andi - Wednesday & Thursday (Time?)
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Release of homework on Thursday / Friday and then concurrent
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Outline

Linear Systems of Equations

Solution Techniques - Gauss Jordan

Matrix Decomposition

Matrix Factorization

Singular Value Decomposition

Rank and sensitivity
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Material

Numerical Recipes: Chapter 2

Math for ML: Chapter 2.1-2.3
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Example: Camera calibration
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Example: Plane Estimation
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Linear Systems of Equations

One of the most basic tasks is solve for a set of unknowns

a00x0 + a01x1 + a02x2 + . . .+ a0n�1xn�1 = b0

a10x0 + a11x1 + a12x2 + . . .+ a1n�1xn�1 = b1
...

am�10x0 + am�11x1 + am�12x2 + . . .+ am�1n�1xn�1 = bm�1

which we can rewrite
A~x = ~b

where

A =

0

BBB@

a00 a01 a01 · · · a0n�1

a10 a11 a11 · · · a1n�1

...
am�10 am�11 am�11 · · · am�1n�1

1

CCCA
, ~b =

0

BBBBB@

b0

b1

b2
...

bm�1

1

CCCCCA
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Matrix Properties

Given an m ⇥ n matrix A we define
Column space - Linear combination of columns
Row space - Linear combination of row

We can consider A a mapping:

A : Rn ! R
m

0

BBB@

x0

x1
...

xn�1

1

CCCA
!

0

BBB@

b0

b1
...

bm�1

1

CCCA
= A

0

BBB@

x0

x1
...

xn�1

1

CCCA

Column space of A is vector subspace of Rm that image vectors under A
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Null Space

We define the null-space: set of vectors x 2 R
n where

Ax = 0

The row space and the null space are complementary

n = dim(row space) + dim(null space)
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Questions

Questions
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Matrix properties

Consider the square matrix A. The square matrix B is the inverse if

AB = In = BA

and we denote this A�1.

If the inverse exists the matrix is called regular/invertable/non-singular

Inverse matrices are unique

If the determinant of A: det(A) is zero the matrix is singular

The transpose of A is denoted A
T and elements of the transpose are a

T
ji = aij

useful properties
AA

�1 = I = A
�1

A

(AB)�1 = B
�1

A
�1

(A+ B)�1 6= A
�1 + B

�1

(AT )T = A

(A+ B)T = A
T + B

T

(AB)T = B
T
A
T
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Matrix Characteristics

Can we characterize when a matrix is singular?
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Singular matrices

A matrix A is singular i↵
det(A) = 0
rank(A) < n
rows of A are not linearly independent
columns of A are not linearly independent
the dimension of the null-space of A is non-zero
A is not invertible
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Gauss-Jordan Elimination

How can we solve the equation system - A~x = ~b?

The standard form
A~x = ~b ! U~x 0 = ~b0

where

U =

0

B@
d0 U

0
m

. . .
0 dn�1

1

CA

Two di↵erent approaches:
1 Gauss Elimination - Ux 0 = b0

2 Gauss Jordan - Dx⇤ = b⇤

Allows for direct back substitution
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Example of Elimination
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Gauss Elimination ! Gauss Jordan
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Questions

Questions

H. I. Christensen (UCSD) Math for Robotics Sep 2023 17 / 34



Matrix Decomposition

Given an m ⇥ n matrix we can write A in the form

PA = LDU

where:
P is an m ⇥m permutation matrix that specs row interchanges
L is a lower triangular matrix with 1 along the diagonal
U is a upper triangular matrix with 1 along the diagonal
D is a square diagonal only matrix

If A is a symmetric positive definite then U = LT and D has strictly positive
diagonal elements
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Solving the matrix system

Our objective is to solve

LDUx = Pb which we can solve
Ly = Pb (solve for y)
Ux = D

�1
y (solve for x)

Enable use of forward / backward substitution
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Square - Full Rank Matrices

If A is a square n ⇥ n matrix with n linearly independent eigen vectors, then

A = SES�1

where
E is a diagonal matrix where elements are the eigenvalues of A
S is a matrix where the columns are the eigenvectors of A

Any solution is then a linear combination of basis vectors. Useful for example
for sub-space methods (discussed later)
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Matrix factorization based on ATA

We will look at QR and SVD decompositions in more detail

Consider A has independent columns then we can factorize

A = QR

where Q is m ⇥ n and R is n ⇥ n

Q has the same column space as A but it is orthonormal, i.e., QT
Q = I

R is upper triangular

Two possible approaches:
Use Gram Schmidt to orthogonalize A. The columns are now an orthonormal
basis, R is computed by keep track of the G-S operations. R expresses the
linear combinations of Q to form A.
i) Form ATA, ii) compute LDU factorization, iii) R = D

1

2 LT and Q = AR�1

More e�cient QR factorizations exist (see Numerical Recipes) in general
O(n3)
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Gram-Schmidt?

Build an orthonormal basis by re-projection

Build a basis using proju(v) =
<v ,u>
<u,u>u, i.e., project v onto u

Process is then

u1 = v1

u2 = v2 � projv1(v2)

u3 = v3 � projv1(v3)� projv2(v3)

uk = vk �
Pk�1

j=1
projuj (vk)

ei =
vi

||vi || as the normal basis vectors
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Applications

QR: is an iterative process of building a factorization / eigenvectors

If we wish to solve a system Ax = b in the LSQ sense

x̄ = (AT
A)�1

A
T
b

given full rank Q
T
Q = I i.e. with a QR factorization

x̄ = R
�1

Q
T
b

compute Q
T
R and back substitute for Rx̄ = Q

T
b more stable than

A
T
Ax̄ = A

T
b, i.e., the Moore-Penrose pseudo inverse
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Questions

Questions
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Singular Value Decomposition

We can factorize any m ⇥ n matrix A as

A = UDV
T

where
U is an m ⇥m w. columns are the eigenvectors of ATA
D is a diagonal matrix

D =

0

BBBBB@

�1

. . . 0
�k

0 0
0

1

CCCCCA

where �1 > · · · > �k > 0 and the rank(A) = k
�i are sqrt of eigenvalues of ATA and called the singular values
if A is symmetric and positive definite then U = V T and D is the eigenvalue
matrix of A
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Question

You are telling us all this why?
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Motivation

Goal is to solve
Ax = b

For all A and b

In a numerically stable manner

Solve equation in reasonable time

Comments
Ideally we would like for an n ⇥ n matrix

x = A�1b

If A is under-constrained the full solution set
If A is over-constrained the LSQ solution
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Considerations

1 Gauss Elimination is e�cient, but not necessarily stable
0
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0 0 1

1

A

0

@
1.01 1.00 1.00
1.00 1.01 1.00
1.00 1.00 1.01

1

A

Independent Independent?

not well suited for close to singular or over-constrained systems
2 Can we do elimination and solve

Ly = b and Ux = D
�1

y

if A is close to singular D�1 could be a challenge
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Eigenvector factorization

Remembers we can factorize a square matrix

A = SES
�1

where E is the eigenvalue matrix and S is the eigenvector matrix

We can add this to the trick of working with A
T
A or AAT

We can use
A
T
A = VDV

T

and
AA

T = UD
0
U

T

Where D is the eigenvalue of AT
A, V are the eigenvalue of AT

A, D’ are the
eigenvalue of AAT and U are eigenvectors of AAT

We can decompose
A = UDV

T

Note:
rank(A) = rank(D) = k
colspace(A) = first k columns of U
nullspace(A) = first n-k columns of V
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Numerical considerations

If SVD generates ⇡ 0 eigenvalues the best is zero them out (compare values,
see later)

Example we had before
0

@
1.01 1.00 1.00
1.00 1.01 1.00
1.00 1.00 1.01

1

A

the D matrix is then 0

@
3.01 0 0
0 0.01 0
0 0 0.01

1

A

so you barely have full rank.
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Sensivity

If we use

A = UDV
T then using

nX

i=1

�iuivj

solving for Ax = b is then

x = A
�1

b = (UDV T )�1
v )

X uib

�i
vj

as �i decreases we have a sensitivity problem

The condition number is a good indicator

K (A) =
�1

�k
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Using SVD

To solve Ax = b we can compute

x̄ = V
1

D
U

T
b

The solution is
If A is non-singular then x̄ is the unique solution
If A is singular then x̄ is the solution is closest to origin when b is range

I.e., Ax̄ = b

If A is singular and b is not in range then x̄ is the LSQ solution
I.e., Ax̄ 6= b

You can use SVD for all your needs to solve the equations Ax = b
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Linear Systems of Equations

Many problems in robotics can be solved using linear systems of equations

Stability and sensitivity are key to consider

Numerous factorization methods available - QR and SVD merely two of them

You can use numerous tricks to make problems tractable

Factorization part of all the big packages - NumPy, Matlab, Linpack, ...

H. I. Christensen (UCSD) Math for Robotics Sep 2023 33 / 34



Questions

Questions
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