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@ TA hours: Andi - Wednesday & Thursday (Time?)
@ HW dates: Oct 17, Oct 31, Nov 14, Nov 28, Dec 7
@ Release of homework on Thursday / Friday and then concurrent
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Linear Systems of Equations

Solution Techniques - Gauss Jordan

Matrix Factorization

°
°

@ Matrix Decomposition

°

@ Singular Value Decomposition
°

Rank and sensitivity
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@ Numerical Recipes: Chapter 2
@ Math for ML: Chapter 2.1-2.3
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Example: Camera calibration
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Linear Systems of Equations

@ One of the most basic tasks is solve for a set of unknowns

agoXo + ao1X1 + agexo + ...+ agn—1Xn—1 = bg
a10Xp + a11X1 + d12Xo + ... + A1p—1Xp—1 = by
am—10X0 + am—11X1 + @m—12X2 + ... + Am—1p—1Xn—1 = bm_1
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Linear Systems of Equations

@ One of the most basic tasks is solve for a set of unknowns

agoXo + ao1X1 + ageXxo + ...+ agn—1Xn—1 = bg

a10Xp + a11X1 + d12Xo + ... + A1p—1Xp—1 = by
am—10X0 + am—11X1 + @m—12X2 + ... + Am—1p—1Xn—1 = bm_1

@ which we can rewrite
AxX=0b
where

bo

400 ao1 ao1 s don—1 by

a10 a11 a1l s din—1 - by

A= b=
dm—-10 dm—-11 Adm-11 - dm—1n—-1 b

m—1
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Matrix Properties

@ Given an m x n matrix A we define

o Column space - Linear combination of columns
o Row space - Linear combination of row

@ We can consider A a mapping:

A:R"— R™
X0 bo X0
X1 b1 X1
— =A
Xn—1 bm—l Xp—1

@ Column space of A is vector subspace of R™ that image vectors under A

H. I. Christensen (UCSD) Math for Robotics Sep 2023

Null Space

@ We define the null-space: set of vectors x € R" where
Ax =0
@ The row space and the null space are complementary

n = dim(row space) + dim(null space)
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Questions
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Matrix properties

@ Consider the square matrix A. The square matrix B is the inverse if
AB=1,=BA

and we denote this A~1.
If the inverse exists the matrix is called regular/invertable/non-singular

Inverse matrices are unique

°
°

o If the determinant of A: det(A) is zero the matrix is singular

@ The transpose of A is denoted AT and elements of the transpose are a} = ajj
°

useful properties

AATL = I=AT1A
(AB)"t = BlAl
(A+B)™' # Al+B7!

(A" = A
(A+B)T = AT +BT
(AB)T = BTAT
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Matrix Characteristics

Can we characterize when a matrix is singular?
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Singular matrices

@ A matrix A is singular iff

o det(A) =0

e rank(A) < n

e rows of A are not linearly independent

e columns of A are not linearly independent

e the dimension of the null-space of A is non-zero
e A is not invertible
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Gauss-Jordan Elimination

o How can we solve the equation system - AX = b?
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Gauss-Jordan Elimination

o How can we solve the equation system - AX = b?
@ The standard form
AX=b — Ux' =V

where
do U’
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Gauss-Jordan Elimination

o How can we solve the equation system - AX = b?

@ The standard form . .
AX=b — UX' =V

where
do vl

@ Two different approaches:
@ Gauss Elimination - Ux’ = b’
@ Gauss Jordan - Dx* = b*
Allows for direct back substitution
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0 4 -1 X1 5
1 1 1 X2 =1 6
2xnlo 1 x3 1
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Example of Elimination

0 4
1 1
2212
1 1
0 4
2 =2
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—1 X1
1 X2
1 X3
1 X1
-1 X2
1 X3

5 0
=| 6 1
1 2
6 1
=\ 5 0
1 2
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0 4
1 1
2212
1 1
0 4
2 =2
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—1 X1
1 X2
1 X3
1 X1
-1 X2
1 X3
X1
X2
X3

5 0

=| 6 1
1 2

6 1

=\ 5 0
1 2

6 1

5 0

—11 0
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Example of Elimination

0 4 -1 X1 5 0 4 —-11|5

1 1 1 xx | =16 1 1 116

212 1 X3 1 2 =2 1)1

1 1 1 X1 6 1 1 116

0 4 -1 xx | =1 b 0 4 -11]5

2 =2 1 X3 1 2 =2 1)1
1 1 1 X1 6 1 1 1 6
0 4 -1 X2 | = 5 0 4 -1 5
0 -4 -1 X3 —11 0 -4 -1|-11

1 1 1 X1 6 1 1 1 6

0 4 -1 X2 | = 5 0 4 -1 5

0 0 -2 X3 —6 0 0 —2|-6
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Gauss Elimination — Gauss Jordan
11 1 X1 6 11 116
0 4 —1 x» | =] 5 0 4 —11/5
00 1 X3 3 00 1|3
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Gauss Elimination — Gauss Jordan

1 1 1 X1 6 1 1 116
0 4 -1 x | =1 b5 0 4 —-1|5
0 0 1 X3 3 0 O 1]3

1 11 X1 6 1 1 .16

0 4 0 x | =1 8 0 4 0|8

0 01 X3 3 0 0 1|3
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1 1 1 X1 6 1 1 116
0 4 -1 x | =1 b 0 4 —-1|5
0 0 1 X3 3 0 O 113

1 11 X1 6 1 1 16

0 4 0 x | =1 8 0 4 0|8

0 01 X3 3 0 0 1|3

1 11 X1 6 1 1 16

0 1 0 X | =1 2 0 1 02

0 0 1 X3 3 0 0 1|3
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Gauss Elimination — Gauss Jordan

1 1 1 X1 6 1 1 116
0 4 -1 x | =1 b5 0 4 —-1|5
0 0 1 X3 3 0 O 1]3

1 11 X1 6 1 1 .16

0 4 0 x | =1 8 0 4 0|8

0 01 X3 3 0 0 1|3

1 11 X1 6 1 1 16

0 1 0 X | =1 2 0 1 02

0 0 1 X3 3 0 0 1|3

1 0 0 X1 1 1 0 01

010 x | =1 2 01 02

0 0 1 X3 3 0 0 1|3
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Questions
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Matrix Decomposition

@ Given an m X n matrix we can write A in the form
PA = LDU

@ where:
@ P is an m x m permutation matrix that specs row interchanges
o L is a lower triangular matrix with 1 along the diagonal
e U is a upper triangular matrix with 1 along the diagonal
e D is a square diagonal only matrix

o If A is a symmetric positive definite then U = L7 and D has strictly positive
diagonal elements
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Solving the matrix system

@ Our objective is to solve

LDUx = Pb which we can solve
Ly = Pb (solve for y)
Ux = D7ly (solve for x)

@ Enable use of forward / backward substitution
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Square - Full Rank Matrices

o If A is a square n X n matrix with n linearly independent eigen vectors, then
A =SES™!

where

e E is a diagonal matrix where elements are the eigenvalues of A
e S is a matrix where the columns are the eigenvectors of A

@ Any solution is then a linear combination of basis vectors. Useful for example
for sub-space methods (discussed later)
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Matrix factorization based on AT A

@ We will look at QR and SVD decompositions in more detail

Consider A has independent columns then we can factorize
A= QR

where Q ismx nand Risnxn

Q has the same column space as A but it is orthonormal, i.e., QT Q =/

R is upper triangular

Two possible approaches:

e Use Gram Schmidt to orthogonalize A. The columns are now an orthonormal
basis, R is computed by keep track of the G-S operations. R expresses the
linear combinations of Q to form A.

o i) Form AT A, ii) compute LDU factorization, iil) R = DzL" and Q = AR

More efficient QR factorizations exist (see Numerical Recipes) in general

O(n®)
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Gram-Schmidt?

Build an orthonormal basis by re-projection

<v,u>

ITRTS u, 1.e., project v onto u

Build a basis using proj,(v) =
Process is then

ihh =W

Uy = V2 — proj,, (v2)

us = vz — proj, (v3) — proj,(v3)
Uk = Vi — Zj-:ll proju; (vi)

Vi

& = 1,7 s the normal basis vectors
1
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Applications

QR: is an iterative process of building a factorization / eigenvectors

If we wish to solve a system Ax = b in the LSQ sense
x=(ATA)ATh
given full rank QTQ =1 i.e. with a QR factorization
x=R1'QTb

compute QT R and back substitute for Rx = QT b more stable than
ATAx = AT b, i.e., the Moore-Penrose pseudo inverse
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Questions
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Singular Value Decomposition

@ We can factorize any m X n matrix A as

A= UDVT
where

e Uis an m x m w. columns are the eigenvectors of AT A
o D is a diagonal matrix

o1

Ok

where o1 > -+ > 04 > 0 and the rank(A) = k
e 0; are sqrt of eigenvalues of A7 A and called the singular values

e if A is symmetric and positive definite then U = V' and D is the eigenvalue
matrix of A
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You are telling us all this why?
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Goal is to solve

Ax =0b
For all A and b

In a numerically stable manner
Solve equation in reasonable time

Comments

o ldeally we would like for an n x n matrix
x=A"1b

o If A is under-constrained the full solution set
o If A is over-constrained the LSQ solution
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Considerations

@ Gauss Elimination is efficient, but not necessarily stable

1 0 0 1.01 1.00 1.00

0 1 0 1.00 1.01 1.00

0 0 1 1.00 1.00 1.01
Independent Independent?

not well suited for close to singular or over-constrained systems

@ Can we do elimination and solve
Ly = band Ux = D71y

if A is close to singular D~ could be a challenge
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Eigenvector factorization

@ Remembers we can factorize a square matrix
A= SES™!

where E is the eigenvalue matrix and S is the eigenvector matrix
@ We can add this to the trick of working with AT A or AAT

@ We can use
ATA=VvDVT
and
AAT = UuD'U"
@ Where D is the eigenvalue of AT A,V are the eigenvalue of ATA, D' are the
eigenvalue of AAT and U are eigenvectors of AAT
@ We can decompose
A= UDVT
o Note:
e rank(A) = rank(D) = k
e colspace(A) = first k columns of U
e nullspace(A) = first n-k columns of V
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Numerical considerations

@ If SVD generates = 0 eigenvalues the best is zero them out (compare values,

see later)

@ Example we had before

1.01
1.00
1.00

the D matrix is then

so you barely have full rank.
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@ If we use

A= UDVT then using Za;u;vj

solving for Ax = b is then

i=1

b
=Ab=(UDVT) lv= > 22y
X b= (U ) v = - v

as o; decreases we have a sensitivity problem

@ The condition number is a good indicator

K(A) =

01
Ok
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Using SVD

@ To solve Ax = b we can compute

@ The solution is

e If A is non-singular then X is the unique solution
e If A is singular then X is the solution is closest to origin when b is range

o le, Ax=0b
e If Ais singular and b is not in range then X is the LSQ solution
o le, AX#£ b

@ You can use SVD for all your needs to solve the equations Ax = b
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Linear Systems of Equations

Many problems in robotics can be solved using linear systems of equations
Stability and sensitivity are key to consider
Numerous factorization methods available - QR and SVD merely two of them

You can use numerous tricks to make problems tractable

Factorization part of all the big packages - NumPy, Matlab, Linpack, ...

H. I. Christensen (UCSD) Math for Robotics Sep 2023



Questions
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