CSE276C - Linear Systems of Equations

Henrik I. Christensen

Computer Science and Engineering
University of California, San Diego
http://cri.ucsd.edu

September 2023

Logistics

- TA hours: Andi - Wednesday \& Thursday (Time?)
- HW dates: Oct 17, Oct 31, Nov 14, Nov 28, Dec 7
- Release of homework on Thursday / Friday and then concurrent

Outline

- Linear Systems of Equations
- Solution Techniques - Gauss Jordan
- Matrix Decomposition
- Matrix Factorization
- Singular Value Decomposition
- Rank and sensitivity

Material

- Numerical Recipes: Chapter 2
- Math for ML: Chapter 2.1-2.3

Example: Camera calibration

Example: Plane Estimation

(a)

(d)

(b)

(e)

(c)

(f)

Linear Systems of Equations

- One of the most basic tasks is solve for a set of unknowns

$$
\left\{\begin{array}{ccc}
a_{00} x_{0}+a_{01} x_{1}+a_{02} x_{2}+\ldots+a_{0 n-1} x_{n-1} & = & b_{0} \\
a_{10} x_{0}+a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n-1} x_{n-1} & = & b_{1} \\
\vdots & & \\
a_{m-10} x_{0}+a_{m-11} x_{1}+a_{m-12} x_{2}+\ldots+a_{m-1 n-1} x_{n-1} & =b_{m-1}
\end{array}\right.
$$

Linear Systems of Equations

- One of the most basic tasks is solve for a set of unknowns

$$
\begin{aligned}
a_{00} x_{0}+a_{01} x_{1}+a_{02} x_{2}+\ldots+a_{0 n-1} x_{n-1} & =b_{0} \\
a_{10} x_{0}+a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n-1} x_{n-1} & =b_{1}
\end{aligned}
$$

$$
a_{m-10} x_{0}+a_{m-11} x_{1}+a_{m-12} x_{2}+\ldots+a_{m-1 n-1} x_{n-1}=b_{m-1}
$$

- which we can rewrite

$$
\mathbf{A} \vec{x}=\vec{b}
$$

where

$$
\mathbf{A}=\left(\begin{array}{ccccc}
a_{00} & a_{01} & a_{01} & \cdots & a_{0 n-1} \\
a_{10} & a_{11} & a_{11} & \cdots & a_{1 n-1} \\
& & \vdots & & \\
a_{m-10} & a_{m-11} & a_{m-11} & \cdots & a_{m-1 n-1}
\end{array}\right), \vec{b}=\left(\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2} \\
\vdots \\
b_{m-1}
\end{array}\right)
$$

Matrix Properties

- Given an $m \times n$ matrix A we define
- Column space - Linear combination of columns
- Row space - Linear combination of row
- We can consider A a mapping:

$$
\begin{gathered}
A: R^{n} \rightarrow R^{m} \\
\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1}
\end{array}\right) \rightarrow\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{m-1}
\end{array}\right)=\mathbf{A}\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1}
\end{array}\right)
\end{gathered}
$$

- Column space of A is vector subspace of R^{m} that image vectors under A

Null Space

- We define the null-space: set of vectors $x \in R^{n}$ where

$$
A x=0
$$

- The row space and the null space are complementary

$$
n=\operatorname{dim}(\text { row space })+\operatorname{dim}(\text { null space })
$$

Questions

Questions

Matrix properties

- Consider the square matrix A. The square matrix B is the inverse if

$$
A B=I_{n}=B A
$$

and we denote this A^{-1}.

- If the inverse exists the matrix is called regular/invertable/non-singular
- Inverse matrices are unique
- If the determinant of $\mathrm{A}: \operatorname{det}(A)$ is zero the matrix is singular
- The transpose of A is denoted A^{T} and elements of the transpose are $a_{j i}^{T}=a_{i j}$
- useful properties

$$
\begin{array}{clc}
A A^{-1} & = & I=A^{-1} A \\
(A B)^{-1} & = & B^{-1} A^{-1} \\
(A+B)^{-1} & \neq & A^{-1}+B^{-1} \\
\left(A^{T}\right)^{T} & = & A \\
(A+B)^{T} & =A^{T}+B^{T} \\
(A B)^{T} & = & B^{T} A^{T}
\end{array}
$$

Matrix Characteristics

Can we characterize when a matrix is singular?

Singular matrices

- A matrix \mathbf{A} is singular iff
- $\operatorname{det}(A)=0$
- $\operatorname{rank}(\mathrm{A})<\mathrm{n}$
- rows of A are not linearly independent
- columns of A are not linearly independent
- the dimension of the null-space of A is non-zero
- A is not invertible

Gauss-Jordan Elimination

- How can we solve the equation system $-\mathbf{A} \vec{x}=\vec{b}$?

Gauss-Jordan Elimination

- How can we solve the equation system $-\mathbf{A} \vec{x}=\vec{b}$?
- The standard form

$$
\mathbf{A} \vec{x}=\vec{b} \rightarrow \mathbf{U} \vec{x}^{\prime}=\vec{b}^{\prime}
$$

where

$$
\mathbf{U}=\left(\begin{array}{ccc}
d_{0} & & U_{m}^{\prime} \\
& \ddots & \\
0 & & d_{n-1}
\end{array}\right)
$$

Gauss-Jordan Elimination

- How can we solve the equation system - $\mathbf{A} \vec{x}=\vec{b}$?
- The standard form

$$
\begin{array}{r}
\mathbf{A} \vec{x}=\vec{b} \rightarrow \mathbf{U} \vec{x}^{\prime}=\vec{b}^{\prime} \\
\mathbf{U}=\left(\begin{array}{ccc}
d_{0} & & U_{m}^{\prime} \\
& \ddots & \\
0 & & d_{n-1}
\end{array}\right)
\end{array}
$$

where

- Two different approaches:
(1) Gauss Elimination - $U x^{\prime}=b^{\prime}$
(2) Gauss Jordan - $D x^{*}=b^{*}$

Allows for direct back substitution

Example of Elimination

$$
\left(\begin{array}{rrr}
0 & 4 & -1 \\
1 & 1 & 1 \\
2 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
5 \\
6 \\
1
\end{array}\right) \quad\left(\begin{array}{rrr|r}
0 & 4 & -1 & 5 \\
1 & 1 & 1 & 6 \\
2 & -2 & 1 & 1
\end{array}\right)
$$

Example of Elimination

$$
\begin{aligned}
& \left(\begin{array}{rrr}
0 & 4 & -1 \\
1 & 1 & 1 \\
2 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
5 \\
6 \\
1
\end{array}\right)\left(\begin{array}{rrr|r}
0 & 4 & -1 & 5 \\
1 & 1 & 1 & 6 \\
2 & -2 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 4 & -1 \\
2 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
5 \\
1
\end{array}\right) \quad\left(\begin{array}{rrr|r}
1 & 1 & 1 & 6 \\
0 & 4 & -1 & 5 \\
2 & -2 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Example of Elimination

$$
\begin{aligned}
&\left(\begin{array}{rrr}
0 & 4 & -1 \\
1 & 1 & 1 \\
2 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
5 \\
6 \\
1
\end{array}\right)\left(\begin{array}{rrr|r}
0 & 4 & -1 & 5 \\
1 & 1 & 1 & 6 \\
2 & -2 & 1 & 1
\end{array}\right) \\
&\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 4 & -1 \\
2 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
5 \\
1
\end{array}\right) \quad\left(\begin{array}{rrr|r}
1 & 1 & 1 & 6 \\
0 & 4 & -1 & 5 \\
2 & -2 & 1 & 1
\end{array}\right) \\
&\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 4 & -1 \\
0 & -4 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
6 \\
5 \\
-11
\end{array}\right) \quad\left(\begin{array}{rrr|r}
1 & 1 & 1 & 6 \\
0 & 4 & -1 & 5 \\
0 & -4 & -1 & -11
\end{array}\right)
\end{aligned}
$$

Example of Elimination

$$
\left.\begin{array}{rl}
\left(\begin{array}{rrr}
0 & 4 & -1 \\
1 & 1 & 1 \\
2 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{l}
5 \\
6 \\
1
\end{array}\right) \\
\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 4 & -1 \\
2 & -2 & 1
\end{array}\right)\left(\begin{array}{rrr|r}
x_{1} \\
x_{2} \\
1 & 4 & -1 & 5 \\
2 & -2 & 1 & 1
\end{array}\right) & =\binom{6}{x_{3}} \\
1
\end{array}\right)\left(\begin{array}{rrr|r}
1 & 1 & 1 & 6 \\
0 & 4 & -1 & 5 \\
2 & -2 & 1 & 1
\end{array}\right), ~\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 4 & -1 \\
0 & -4 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
6 \\
5 \\
-11
\end{array}\right) \quad\left(\begin{array}{rrr|r}
1 & 1 & 1 & 6 \\
0 & 4 & -1 & 5 \\
0 & -4 & -1 & -11
\end{array}\right) .
$$

Gauss Elimination \rightarrow Gauss Jordan

$$
\left(\begin{array}{r|rr}
1 & 1 & 1 \\
0 & 4 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
5 \\
3
\end{array}\right) \quad\left(\begin{array}{rrr|r}
1 & 1 & 1 & 6 \\
0 & 4 & -1 & 5 \\
0 & 0 & 1 & 3
\end{array}\right)
$$

Gauss Elimination \rightarrow Gauss Jordan

$$
\left.\begin{array}{rl}
\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 4 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{l}
6 \\
5 \\
3
\end{array}\right) \\
\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{llr|r}
1 & 1 & 1 & 6 \\
0 & 4 & -1 & 5 \\
0 & 0 & 1 & 3
\end{array}\right) \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
8 \\
3
\end{array}\right) \quad\left(\begin{array}{lll|l}
1 & 1 & 1 & 6 \\
0 & 4 & 0 & 8 \\
0 & 0 & 1 & 3
\end{array}\right), ~ \$
$$

Gauss Elimination \rightarrow Gauss Jordan

$$
\begin{aligned}
\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 4 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{l}
6 \\
5 \\
3
\end{array}\right)\left(\begin{array}{rrr|r}
1 & 1 & 1 & 6 \\
0 & 4 & -1 & 5 \\
0 & 0 & 1 & 3
\end{array}\right) \\
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{l}
6 \\
8 \\
3
\end{array}\right) \quad\left(\begin{array}{lll|l}
1 & 1 & 1 & 6 \\
0 & 4 & 0 & 8 \\
0 & 0 & 1 & 3
\end{array}\right) \\
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{l}
6 \\
2 \\
3
\end{array}\right) \quad\left(\begin{array}{lll|l}
1 & 1 & 1 & 6 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right)
\end{aligned}
$$

Gauss Elimination \rightarrow Gauss Jordan

$$
\left.\begin{array}{rl}
\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 4 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{l}
6 \\
5 \\
3
\end{array}\right) \\
\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr|r}
1 & 1 & 1 & 6 \\
0 & 4 & -1 & 5 \\
0 & 0 & 1 & 3
\end{array}\right) \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
8 \\
3
\end{array}\right)\left(\begin{array}{lll|l}
1 & 1 & 1 & 6 \\
0 & 4 & 0 & 8 \\
0 & 0 & 1 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 1
\end{array} 1\right.
$$

Questions

Questions

Matrix Decomposition

- Given an $m \times n$ matrix we can write \mathbf{A} in the form

$$
\mathrm{PA}=\mathrm{LDU}
$$

- where:
- P is an $m \times m$ permutation matrix that specs row interchanges
- L is a lower triangular matrix with 1 along the diagonal
- U is a upper triangular matrix with 1 along the diagonal
- D is a square diagonal only matrix
- If \mathbf{A} is a symmetric positive definite then $\mathbf{U}=\mathbf{L}^{T}$ and D has strictly positive diagonal elements

Solving the matrix system

- Our objective is to solve

$$
\begin{array}{rlll}
L D U x & =P b & & \text { which we can solve } \\
L y & =P b & & (\text { solve for } y) \\
U x & =D^{-1} y & & (\text { solve for } x)
\end{array}
$$

- Enable use of forward / backward substitution

Square - Full Rank Matrices

- If \mathbf{A} is a square $n \times n$ matrix with n linearly independent eigen vectors, then

$$
\mathbf{A}=\mathbf{S E S}^{-1}
$$

where

- E is a diagonal matrix where elements are the eigenvalues of A
- S is a matrix where the columns are the eigenvectors of A
- Any solution is then a linear combination of basis vectors. Useful for example for sub-space methods (discussed later)

Matrix factorization based on $A^{T} A$

- We will look at QR and SVD decompositions in more detail
- Consider A has independent columns then we can factorize

$$
A=Q R
$$

where Q is $m \times n$ and R is $n \times n$

- Q has the same column space as A but it is orthonormal, i.e., $Q^{T} Q=I$
- R is upper triangular
- Two possible approaches:
- Use Gram Schmidt to orthogonalize A. The columns are now an orthonormal basis, R is computed by keep track of the G-S operations. R expresses the linear combinations of Q to form A.
- i) Form $A^{T} A$, ii) compute LDU factorization, iii) $R=D^{\frac{1}{2}} L^{T}$ and $Q=A R^{-1}$
- More efficient QR factorizations exist (see Numerical Recipes) in general $O\left(n^{3}\right)$

Gram-Schmidt?

- Build an orthonormal basis by re-projection
- Build a basis using $\operatorname{proj}_{u}(v)=\frac{\langle v, u\rangle}{\langle u, u\rangle} u$, i.e., project v onto u
- Process is then
- $u_{1}=v_{1}$
- $u_{2}=v_{2}-\operatorname{proj}_{v_{1}}\left(v_{2}\right)$
- $u_{3}=v_{3}-\operatorname{proj}_{v_{1}}\left(v_{3}\right)-\operatorname{proj}_{v_{2}}\left(v_{3}\right)$
- $u_{k}=v_{k}-\sum_{j=1}^{k-1} \operatorname{proj}_{u_{j}}\left(v_{k}\right)$
- $e_{i}=\frac{v_{i}}{\left\|v_{i}\right\|}$ as the normal basis vectors

Applications

- QR: is an iterative process of building a factorization / eigenvectors
- If we wish to solve a system $A x=b$ in the LSQ sense

$$
\bar{x}=\left(A^{T} A\right)^{-1} A^{T} b
$$

given full rank $Q^{T} Q=/$ i.e. with a $Q R$ factorization

$$
\bar{x}=R^{-1} Q^{T} b
$$

compute $Q^{T} R$ and back substitute for $R \bar{x}=Q^{T} b$ more stable than $A^{T} A \bar{x}=A^{T} b$, i.e., the Moore-Penrose pseudo inverse

Questions

Questions

Singular Value Decomposition

- We can factorize any $m \times n$ matrix A as

$$
A=U D V^{\top}
$$

where

- U is an $m \times m \mathrm{w}$. columns are the eigenvectors of $A^{T} A$
- D is a diagonal matrix

$$
D=\left(\begin{array}{ccccc}
\sigma_{1} & & & & \\
& \ddots & & 0 & \\
& & \sigma_{k} & & \\
& 0 & & 0 & \\
& & & & 0
\end{array}\right)
$$

where $\sigma_{1}>\cdots>\sigma_{k}>0$ and the $\operatorname{rank}(\mathrm{A})=\mathrm{k}$

- σ_{i} are sqrt of eigenvalues of $A^{T} A$ and called the singular values
- if A is symmetric and positive definite then $U=V^{\top}$ and D is the eigenvalue matrix of A

Question

You are telling us all this why?

Motivation

- Goal is to solve

$$
A x=b
$$

- For all A and b
- In a numerically stable manner
- Solve equation in reasonable time
- Comments
- Ideally we would like for an $n \times n$ matrix

$$
x=A^{-1} b
$$

- If A is under-constrained the full solution set
- If A is over-constrained the LSQ solution

Considerations

(1) Gauss Elimination is efficient, but not necessarily stable

$$
\underset{\text { Independent }}{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)} \quad\left(\begin{array}{ccc}
1.01 & 1.00 & 1.00 \\
1.00 & 1.01 & 1.00 \\
1.00 & 1.00 & 1.01
\end{array}\right)
$$

not well suited for close to singular or over-constrained systems
(2) Can we do elimination and solve

$$
L y=b \text { and } U x=D^{-1} y
$$

if A is close to singular D^{-1} could be a challenge

Eigenvector factorization

- Remembers we can factorize a square matrix

$$
A=S E S^{-1}
$$

where E is the eigenvalue matrix and S is the eigenvector matrix

- We can add this to the trick of working with $A^{T} A$ or $A A^{T}$
- We can use

$$
A^{T} A=V D V^{T}
$$

and

$$
A A^{T}=U D^{\prime} U^{T}
$$

- Where D is the eigenvalue of $A^{T} A, \mathrm{~V}$ are the eigenvalue of $A^{T} A$, D^{\prime} are the eigenvalue of $A A^{T}$ and U are eigenvectors of $A A^{T}$
- We can decompose

$$
A=U D V^{T}
$$

- Note:
- $\operatorname{rank}(A)=\operatorname{rank}(D)=k$
- colspace $(A)=$ first k columns of U
- nullspace $(\mathrm{A})=$ first $n-k$ columns of V

Numerical considerations

- If SVD generates ≈ 0 eigenvalues the best is zero them out (compare values, see later)
- Example we had before

$$
\left(\begin{array}{lll}
1.01 & 1.00 & 1.00 \\
1.00 & 1.01 & 1.00 \\
1.00 & 1.00 & 1.01
\end{array}\right)
$$

the D matrix is then

$$
\left(\begin{array}{ccc}
3.01 & 0 & 0 \\
0 & 0.01 & 0 \\
0 & 0 & 0.01
\end{array}\right)
$$

so you barely have full rank.

Sensivity

- If we use

$$
A=U D V^{T} \text { then using } \sum_{i=1}^{n} \sigma_{i} u_{i} v_{j}
$$

solving for $A x=b$ is then

$$
x=A^{-1} b=\left(U D V^{T}\right)^{-1} v \Rightarrow \sum \frac{u_{i} b}{\sigma_{i}} v_{j}
$$

as σ_{i} decreases we have a sensitivity problem

- The condition number is a good indicator

$$
K(A)=\frac{\sigma_{1}}{\sigma_{k}}
$$

Using SVD

- To solve $A x=b$ we can compute

$$
\bar{x}=V \frac{1}{D} U^{T} b
$$

- The solution is
- If A is non-singular then \bar{x} is the unique solution
- If A is singular then \bar{x} is the solution is closest to origin when b is range - I.e., $A \bar{x}=b$
- If A is singular and b is not in range then \bar{x} is the LSQ solution - I.e., $A \bar{x} \neq b$
- You can use SVD for all your needs to solve the equations $A x=b$

Linear Systems of Equations

- Many problems in robotics can be solved using linear systems of equations
- Stability and sensitivity are key to consider
- Numerous factorization methods available - QR and SVD merely two of them
- You can use numerous tricks to make problems tractable
- Factorization part of all the big packages - NumPy, Matlab, Linpack, ...

Questions

Questions

