CSE276C - Functional Interpolation and Approximation

Henrik I. Christensen

Computer Science and Engineering University of California, San Diego
http://cri.ucsd.edu

October 2023

Outline

(1) Introduction
(2) Uniform approximation
(3) Chebyshev Approximation

4 Truncated Power Series
(5) Summary

Introduction

- Last time we spoke about direct use of data point / simple models
- What if we want an explicit functional approximation to data?
- Approximating a function/data by a class of simpler functions
- Two main motivations
(1) Decomposition of a complicated function into constituent simpler functions to simplify further work
(2) Recover a function from partial or noisy information
- Applications:
(1) Signal compression / reconstruction (Fourier would be an example)
(2) Data fitting (line, plane, manifold, ...)
(3) Recovery of a model say CAD recovery - Looq is a good example

Material

- Numerical Recipes: Chapter 3.4-3.5
- Numerical Renaissance: Chapter 5

Outline

(1) Introduction

(2) Uniform approximation
(3) Chebyshev Approximation

4 Truncated Power Series
(5) Summary

Uniform approximation by polynomials

- Looking at polynomial again
- What is the best uniform approximation?
- Given a function $\mathrm{f}:[a, b] \rightarrow R$ and a polynomial p we can measure the error by the L_{∞} norm, i.e.,

$$
\|f-p\|_{\infty}=\max _{a<x<b}|f(x)-p(x)|
$$

- A good approximation is one where the norm is small
- Remember Weierstrass' theorem.

Polynomial approximation

- Lets restrict the degree of the polynomial - n
- Lets set π_{n} be all the polynomials degree at most n
- Let uniform distance of from π_{n} be the smallest error achievable using polynomials from π_{n} denoted by

$$
d\left(f, \pi_{n}\right)=\min _{p \in \pi_{n}}\|f-p\|_{\infty}
$$

- How can we make it happen?

Polynomial approximation - getting help

- We have a theorem:
- A function f continuous in $[a, b]$ has exactly one best solution from π_{n}
- The polynomial $p \in \pi_{n}$ of f across $[a, b]$ iff
- there are $\mathrm{n}+2$ point $a \leq x_{0} \leq \ldots \leq x_{n}+1 \leq b$ such that

$$
(-1)^{i}\left[f\left(x_{i}\right)-p\left(x_{i}\right)\right]=\epsilon\|f-p\|_{\infty}
$$

where $\epsilon=\operatorname{signum}\left[f\left(x_{0}\right)-p\left(x_{0}\right)\right]$

- By alternating signs at $n+2$ points the different between f and p is precisely equal to the L_{∞}

Putting theorem to work

- Can we use the theorem to build a strategy?
- Lets consider $f(x)=e^{x}$ on $[-1,1]$
- What would be the best 1 st order approximation, i.e., π_{1}

Fitting the line

- So we have three points
- $x_{0}=-1, x_{1}=$? and $x_{2}=1$
- at which the error is $f(x)=p(x)$
- So what is x_{1} ?

Fitting the line

- So we have three points
- $x_{0}=-1, x_{1}=$? and $x_{2}=1$
- at which the error is $f(x)=p(x)$
- So what is x_{1} ?
- we can write $p(x)=a+b x$
- We can compute the error at the three points:

$$
\begin{aligned}
e\left(x_{0}\right)=f\left(x_{0}\right)-p\left(x_{0}\right)=f(-1)-p(-1) & =\frac{1}{e}-a+b \\
e\left(x_{1}\right)=f\left(x_{1}\right)-p\left(x_{1}\right) & \\
e\left(x_{2}\right)=f\left(x_{2}\right)-p\left(x_{2}\right)=f(1)-p(1) & =e-a-b
\end{aligned}
$$

- Given $e\left(x_{0}\right)=e\left(x_{2}\right)$

$$
\begin{array}{cl}
\frac{1}{e}-a+b & =e-a-b \\
2 b & =e-\frac{1}{e} \\
b & =1.1752
\end{array}
$$

The slope is equal to the average change

Fitting the line (cont)

- How do we find a?
- The difference (positive / negative) should be symmetric
- The error function should at an extrema at x_{0}, x_{1}, x_{2} but with alternate signs
- e(x) $=f(x)-p(x)=e^{x}-a-b x$ so
- $e^{\prime}(x)=e^{x}-b \Rightarrow e^{x_{1}}-b=0$
- $x_{1}=\ln b$
- $x_{1} \approx 0.16144$

Fitting the line (cont)

- How do we find a?
- The difference (positive / negative) should be symmetric
- The error function should at an extrema at x_{0}, x_{1}, x_{2} but with alternate signs
- e $(x)=f(x)-p(x)=e^{x}-a-b x$ so
- $e^{\prime}(x)=e^{x}-b \Rightarrow e^{x_{1}}-b=0$
- $x_{1}=\ln b$
- $x_{1} \approx 0.16144$
- $e\left(x_{1}\right)=-e\left(x_{2}\right) \Rightarrow e^{x_{1}}-a-b x_{1}=-e+a+b$
- $a=\frac{e-b x_{1}}{2} \approx 1.2643$
- $p(x) \approx 1.2643+1.1752 x$
- The maximum error would be $e\left(x_{1}\right)=\left\|f\left(x_{1}\right)-p\left(x_{1}\right)\right\|_{\infty} \approx 0.2788$

Approximation - Discussion

- Example showed a way to construct a solution.
- What if we did not know the appropriate n ?
- If we make n too small there is a lack of fit
- If we make n too large the fit will be poor (too much wiggle)
- Could we estimate $d\left(f, \pi_{n}\right)$?
- Maybe not, but a lower bound might be possible

Divided Differences

- Slight detour
- Divided differences are frequently used to compute coefficients in interpolation polynomials.
- Recursive formulation. Given a set of data points $\left(x_{0}, y_{0}\right), \ldots,\left(x_{k}, y_{k}\right)$

$$
\left[y_{v}, \ldots, y_{v+j}\right]=\frac{\left[y_{v+1}, \ldots, y_{v+j}\right]-\left[y_{v}, \ldots, y_{v+j-1}\right]}{x_{v+j}-x_{v}}
$$

and

$$
\left[y_{v}\right]=y_{v} v \in\{0, \ldots, k\}
$$

- The recursive formulation is computationally effective
- The first few terms

$$
\begin{aligned}
{\left[y_{0}\right] } & =y_{0} \\
{\left[y_{0}, y_{1}\right] } & =\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \\
{\left[y_{0}, y_{1}, y_{2}\right] } & =\frac{\left[y_{1}, y_{2}\right]-\left[y_{0}, y_{1}\right]}{x_{2}-0_{0}}=\frac{\frac{y_{2}-y_{1}}{x_{2}-x_{1}}-\frac{y_{1}-y_{0}}{x_{1}-x_{0}}}{x_{2}-x_{0}} \\
& =\frac{y_{2}-y_{1}}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{0}\right)}-\frac{y_{1}-y_{0}}{\left(x_{1}-x_{0}\right)\left(x_{2}-x_{0}\right)}
\end{aligned}
$$

Estimating a lower bound

- Assume we have a function $f:[a, b] \rightarrow R$
- We will use divided differences to compute bounds
- Lets assume we have three points x_{0}, x_{1}, x_{2} as p is linear

$$
p\left[x_{0}, x_{1}, x_{2}\right]=0
$$

i.e. the gradient does not vary

- we can also write

$$
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left(x_{0}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}+\frac{f\left(x_{1}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}+\frac{f\left(x_{2}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
$$

Estimating lower bound (cont.)

$$
\begin{aligned}
f\left[x_{0}, x_{1}, x_{2}\right] & =f\left[x_{0}, x_{1}, x_{2}\right]-p\left[x_{0}, x_{1}, x_{2}\right] \\
& =(f-p)\left[x_{0}, x_{1}, x_{2}\right] \\
& =\frac{f\left(x_{0}\right)-p\left(x_{0}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}+\frac{f\left(x_{1}\right)-p\left(x_{1}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}+\frac{f\left(x_{2}\right)-p\left(x_{2}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} \\
& =\frac{f\left(x_{0}\right)-p\left(x_{0}\right)}{w^{\prime}\left(x_{0}\right)}+\frac{f\left(x_{1}\right)-p\left(x_{1}\right)}{w^{\prime}\left(x_{1}\right)}+\frac{f\left(x_{2}\right)-p\left(x_{2}\right)}{w^{\prime}\left(x_{2}\right)}
\end{aligned}
$$

where

$$
w^{\prime}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

Estimating lower bound (cont.)

- We can then estimate a bound

$$
\left|f\left[x_{0}, x_{1}, x_{2}\right]\right| \leq\|f-p\|_{\infty}\left(\frac{1}{\left|w^{\prime}\left(x_{0}\right)\right|}+\frac{1}{\left|w^{\prime}\left(x_{1}\right)\right|}+\frac{1}{\left|w^{\prime}\left(x_{2}\right)\right|}\right)
$$

or

$$
\|f-p\|_{\infty} \geq \frac{\left|f\left[x_{0}, x_{1}, x_{2}\right]\right|}{\frac{1}{\left|w^{\prime}\left(x_{0}\right)\right|}+\frac{1}{\left|w^{\prime}\left(x_{1}\right)\right|}+\frac{1}{\left|w^{\prime}\left(x_{2}\right)\right|}}
$$

- the polynomial on left hand side is arbitrary so $d\left(f, \pi_{n}\right)=\min _{p \in \pi_{n}}\|f-p\|_{\infty}$
- right hand side is purely based on f and three points, so we can estimate the value

Back to our example

- Lets use $f(x)=e^{x}$ in the interval $[-1,1]$.
- Pick say $-1,0,1$ as our points

$$
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{1}{2} f(-1)-f(0)+\frac{1}{2} f(1)
$$

and

$$
\frac{1}{\left|w^{\prime}\left(x_{0}\right)\right|}+\frac{1}{\left|w^{\prime}\left(x_{0}\right)\right|}+\frac{1}{\left|w^{\prime}\left(x_{0}\right)\right|}=\frac{1}{2}+1+\frac{1}{2}=2
$$

thus

$$
d\left(f, \pi_{1}\right) \geq \frac{f(-1)-2 f(0)+f(1)}{4}
$$

- the bound is then $d\left(f, \pi_{1}\right)=0.2715$, which is not too far away from 0.2788 that was achieved.
- the lower bounds says that we cannot estimate e^{x} much better than .3 in the interval $-1,1$ with a linear approximation, which is very valuable.

Outline

(1) Introduction

(2) Uniform approximation
(3) Chebyshev Approximation

4 Truncated Power Series
(5) Summary

Chebyshev polynomials

- Chebyshev polynomials are sequences of polynomials that are defined recursively.
- The first kind of a Chebyshev polynomial is denoted $T_{N}(x)$ and given by

$$
T_{N}(x)=\cos (n \arccos x)
$$

looks trigonometric but can be used to general polynomials. I.e

$$
\begin{aligned}
T_{0}(x) & =1 \\
T_{1}(x) & =x \\
T_{2}(x) & =2 x^{2}-1\left(\text { as } \cos (2 \theta)=2 \cos ^{2}(\theta)-1\right) \\
T_{3}(x) & =4 x^{3}-3 x \\
T_{N+1}(x) & =2 x T_{N}(x)-T_{N-1}(x), \text { for } n \geq 1
\end{aligned}
$$

Chebyshev Polynomials

- The polynomials are orthogonal over the interval $[-1,1]$ over a weight of $\left(1-x^{2}\right)^{-1 / 2}$ so that

$$
\int_{-1}^{1} \frac{T_{i}(x) T_{j}(x)}{\sqrt{1-x^{2}}} d x= \begin{cases}0 & i \neq j \\ \frac{\pi}{2} & j=j \neq 0 \\ \pi & i=j=0\end{cases}
$$

Chebyshev Polynomials

- The polynomial $T_{N}(x)$ has N zeros in the internal $[-1,1]$ at the points $x=\cos \left(\frac{\pi\left(k+\frac{1}{2}\right)}{N}\right)$ for $k \in 0, \ldots, N-1$
- There is a similar set of extrema at $x=\cos \left(\frac{\pi k}{N}\right)$

Chebyshev Approximation

- For periodic functions. $f(x)$, over the interval $[-1,1]$ an N coefficient approximation is

$$
\begin{aligned}
c_{j} & =\frac{2}{N} \sum_{k=0}^{N-1} f\left(x_{k}\right) T_{J}\left(x_{k}\right) \\
& =\frac{2}{N} \sum_{k=0}^{N-1} f\left(\cos \frac{\pi\left(k+\frac{1}{2}\right)}{N}\right) \cos \frac{\pi\left(k+\frac{1}{2}\right)}{N}
\end{aligned}
$$

- The approximation is then

$$
f(x) \approx p(x)=\left[\sum_{k=1}^{N-1} c_{k} T_{k}(x)\right]-\frac{1}{2} c_{0}
$$

- which is an exact match in terms of zero crossings
- the errors are uniformly distributed over $[-1,1]$

Warping coordinated

- If the domain is different from $[-1,1]$ the variable can be changed from $[a, b]$

$$
y=\frac{x-\frac{1}{2}(b-a)}{\frac{1}{2}(b-a)}
$$

the approximated can be mapped forward / back as needed

Example of using Checyshev Points for Control

(a) Test case 1

Outline

(1) Introduction
(2) Uniform approximation
(3) Chebyshev Approximation

4 Truncated Power Series
(5) Summary

Truncated Power Series

- The uniform error of the Chebyshev functions/series implies that one can use a limited number of terms
- Say you have a series

$$
f(x)=\frac{1}{2}-\frac{x}{4}+\frac{x^{2}}{8}-\frac{x^{3}}{16}+\ldots
$$

- fitting a polynomial function and trying to achieve $\epsilon<10^{-9}$ would require more than 30 terms
- If we use a Chebyshev approximation
(1) Compute enough terms to have $\epsilon<T$ across series
(2) Change variable to $[-1,1]$
(3) Find Chebyshev series that satisfy error
(9) Truncate series using $c_{k} T_{k}(x)$ as an estimated error residential
(5) Convert back to polynomial form
(0) Convert back to original coordinate range
- For the example the reduction is from 30 to 9 terms

Outline

(1) Introduction
(2) Uniform approximation
(3) Chebyshev Approximation

4 Truncated Power Series
(5) Summary

Functional approximation and interpolation

- Frequently using a functional approximation is much more effective and it adds semantic information (a class) to the data approximation
- The are quite a few functional approximation forms
- Giving a few examples from polynomial, π_{n}, form to periodic function
- A key consideration is what domain knowledge is available to guide model selection

Small example

Questions

Questions

