

CSE276C - Functional Interpolation and Approximation

Henrik I. Christensen

Computer Science and Engineering University of California, San Diego http://cri.ucsd.edu

October 2023

Introduction

- Last time we spoke about direct use of data point / simple models
- What if we want an explicit functional approximation to data?
- Approximating a function/data by a class of simpler functions
- Two main motivations
 - Decomposition of a complicated function into constituent simpler functions to simplify further work
 - **2** Recover a function from partial or noisy information
- Applications:
 - Signal compression / reconstruction (Fourier would be an example)
 - 2 Data fitting (line, plane, manifold, ...)
 - Secovery of a model say CAD recovery Looq is a good example

H. I.	Christensen	(UCSD)

Math for Robotics

Oct 2023

- Numerical Recipes: Chapter 3.4-3.5
- Numerical Renaissance: Chapter 5

Outline

Introduction
 Uniform approximation
 Chebyshev Approximation
 Truncated Power Series
 Summary

Math for Robotics

Uniform approximation by polynomials

Looking at polynomial again

H. I. Christensen (UCSD)

- What is the best uniform approximation?
- Given a function f: $[a, b] \rightarrow R$ and a polynomial p we can measure the error by the L_{∞} norm, i.e.,

$$||f - p||_{\infty} = \max_{a < x < b} |f(x) - p(x)|$$

- A good approximation is one where the norm is small
- Remember Weierstrass' theorem.

Oct 2023

Polynomial approximation

- Lets restrict the degree of the polynomial n
- Lets set π_n be all the polynomials degree at most n
- Let <u>uniform distance</u> of f from π_n be the smallest error achievable using polynomials from π_n denoted by

$$d(f,\pi_n) = \min_{p \in \pi_n} ||f - p||_{\infty}$$

• How can we make it happen?

Putting theorem to work

- Can we use the theorem to build a strategy?
- Lets consider $f(x) = e^x$ on [-1, 1]
- What would be the best 1st order approximation, i.e., π_1

H. I. Christensen (UCSD) Math for Robotics Oct 2023			
	H. I. Christensen (UCSD)	Math for Robotics	Oct 2023

Fitting the line

- So we have three points
- $x_0 = -1$, $x_1 = ?$ and $x_2 = 1$
- at which the error is f(x) = p(x)
- So what is x₁?

Fitting the line

- So we have three points
- $x_0 = -1, x_1 = ?$ and $x_2 = 1$
- at which the error is f(x) = p(x)
- So what is x_1 ?
- we can write p(x) = a + bx
- We can compute the error at the three points:

$$\begin{array}{ll} e(x_0) &= f(x_0) - p(x_0) &= f(-1) - p(-1) &= \frac{1}{e} - a + b \\ e(x_1) &= f(x_1) - p(x_1) &= e^{x_1} - a + b x_1 \\ e(x_2) &= f(x_2) - p(x_2) &= f(1) - p(1) &= e - a - b \end{array}$$

• Given $e(x_0) = e(x_2)$

$$\frac{\frac{1}{e} - a + b}{2b} = \frac{e - a - b}{e - \frac{1}{e}}$$
$$b = 1.1752$$

The slope is equal to the average change

```
H. I. Christensen (UCSD)
```

Math for Robotics

Oct 2023

10 / 30

Fitting the line (cont)

- How do we find a?
- The difference (positive / negative) should be symmetric
- The error function should at an extrema at x_0, x_1, x_2 but with alternate signs

•
$$e(x) = f(x) - p(x) = e^{x} - a - bx$$
 so

•
$$e'(x) = e^x - b \Rightarrow e^{x_1} - b = 0$$

•
$$x_1 = ln b$$

• $x_1 \approx 0.16144$

Fitting the line (cont)

- How do we find a?
- The difference (positive / negative) should be symmetric
- The error function should at an extrema at x_0, x_1, x_2 but with alternate signs

•
$$e(x) = f(x) - p(x) = e^x - a - bx$$
 so

- $e'(x) = e^x b \Rightarrow e^{x_1} b = 0$
- $x_1 = ln b$
- $x_1 \approx 0.16144$
- $e(x_1) = -e(x_2) \Rightarrow e^{x_1} a bx_1 = -e + a + b$
- $a = \frac{e bx_1}{2} \approx 1.2643$
- $p(x) \approx 1.2643 + 1.1752x$
- The maximum error would be $e(x_1) = ||f(x_1) p(x_1)||_{\infty} \approx 0.2788$

H. I. Christensen (UCSD)

Math for Robotics

Oct 2023

11 / 30

Approximation - Discussion

- Example showed a way to construct a solution.
- What if we did not know the appropriate n?
- If we make n too small there is a lack of fit
- If we make n too large the fit will be poor (too much wiggle)
- Could we estimate $d(f, \pi_n)$?
- Maybe not, but a lower bound might be possible

Divided Differences

• Slight detour

 Divided differences are frequently used to compute coefficients in interpolation polynomials.

• Recursive formulation. Given a set of data points $(x_0, y_0), \ldots, (x_k, y_k)$

$$[y_{\nu}, \dots, y_{\nu+j}] = \frac{[y_{\nu+1}, \dots, y_{\nu+j}] - [y_{\nu}, \dots, y_{\nu+j-1}]}{x_{\nu+j} - x_{\nu}}$$

and

$$[y_{\nu}]=y_{\nu} \ \nu \in \{0,\ldots,k\}$$

- The recursive formulation is computationally effective
- The first few terms

$$\begin{bmatrix} y_0 \end{bmatrix} = y_0 \\ \begin{bmatrix} y_0, y_1 \end{bmatrix} = \frac{y_{1-y_0}}{x_{1-x_0}} \\ \begin{bmatrix} y_0, y_1, y_2 \end{bmatrix} = \frac{\begin{bmatrix} y_{1,y_2} \end{bmatrix} - \begin{bmatrix} y_0, y_1 \end{bmatrix}}{x_2 - x_0} = \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0}}{\frac{y_2 - y_1}{(x_2 - x_1)(x_2 - x_0)} - \frac{y_1 - y_0}{(x_1 - x_0)(x_2 - x_0)} }$$

Math for Robotics

H. I. Christensen (UCSD)

Estimating a lower bound

- Assume we have a function $f : [a, b] \rightarrow R$
- We will use divided differences to compute bounds
- Lets assume we have three points x_0, x_1, x_2 as p is linear

$$p[x_0, x_1, x_2] = 0$$

- i.e. the gradient does not vary
- we can also write

$$f[x_0, x_1, x_2] = \frac{f(x_0)}{(x_0 - x_1)(x_0 - x_2)} + \frac{f(x_1)}{(x_1 - x_0)(x_1 - x_2)} + \frac{f(x_2)}{(x_2 - x_0)(x_2 - x_1)}$$

SO

Oct 2023

Estimating lower bound (cont.)

where

$$w'(x) = (x - x_0)(x - x_1)(x - x_2)$$

Math for Robotics

Estimating lower bound (cont.)

• We can then estimate a bound

H. I. Christensen (UCSD)

or

$$||f[x_0, x_1, x_2]| \le ||f - p||_{\infty} \left(\frac{1}{|w'(x_0)|} + \frac{1}{|w'(x_1)|} + \frac{1}{|w'(x_2)|} \right)$$

$$||f - p||_{\infty} \ge \frac{|f[x_0, x_1, x_2]|}{\frac{1}{|w'(x_0)|} + \frac{1}{|w'(x_1)|} + \frac{1}{|w'(x_2)|}}$$

- the polynomial on left hand side is arbitrary so $d(f, \pi_n) = min_{p \in \pi_n} ||f p||_{\infty}$
- right hand side is purely based on f and three points, so we can estimate the value

Oct 2023

Back to our example

- Lets use $f(x) = e^x$ in the interval [-1, 1].
- Pick say -1, 0, 1 as our points

Ī

$$f[x_0, x_1, x_2] = \frac{1}{2}f(-1) - f(0) + \frac{1}{2}f(1)$$

and

$$\frac{1}{w'(x_0)|} + \frac{1}{|w'(x_0)|} + \frac{1}{|w'(x_0)|} = \frac{1}{2} + 1 + \frac{1}{2} = 2$$

thus

H I Christenson (UCSD

$$d(f,\pi_1) \geq \frac{f(-1) - 2f(0) + f(1)}{4}$$

- the bound is then $d(f, \pi_1) = 0.2715$, which is not too far away from 0.2788 that was achieved.
- the lower bounds says that we cannot estimate e^x much better than .3 in the interval -1,1 with a linear approximation, which is very valuable.

		000 2020	11/30
Outline			
 Introduction Uniform approximation 			
3 Chebyshev Approximation	1		
Truncated Power Series			
5 Summary			

Chebyshev polynomials

• Chebyshev polynomials are sequences of polynomials that are defined recursively.

• The first kind of a Chebyshev polynomial is denoted $T_N(x)$ and given by

$$T_N(x) = \cos(n \arccos x)$$

looks trigonometric but can be used to general polynomials. I.e

$$\begin{array}{rcl} T_0(x) &=& 1\\ T_1(x) &=& x\\ T_2(x) &=& 2x^2 - 1(\text{as } \cos(2\theta) = 2\cos^2(\theta) - 1)\\ T_3(x) &=& 4x^3 - 3x\\ T_{N+1}(x) &=& 2xT_N(x) - T_{N-1}(x), \text{ for } n \ge 1 \end{array}$$

Math for Robotics

Chebyshev Polynomials

H. I. Christensen (UCSD)

• The polynomials are orthogonal over the interval [-1,1] over a weight of $(1-x^2)^{-1/2}$ so that

$$\int_{-1}^{1} \frac{T_i(x)T_j(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0 & i \neq j \\ \frac{\pi}{2} & j = j \neq 0 \\ \pi & i = j = 0 \end{cases}$$

Oct 2023

Chebyshev Polynomials

• The polynomial $T_N(x)$ has N zeros in the internal [-1,1] at the points $x = \cos(\frac{\pi(k+\frac{1}{2})}{N})$ for $k \in 0, \dots, N-1$

• There is a similar set of extrema at $x = \cos(\frac{\pi k}{N})$

Math for Robotics

Chebyshev Approximation

H. I. Christensen (UCSD)

• For periodic functions. f(x), over the interval [-1,1] an N coefficient approximation is

$$c_{j} = \frac{2}{N} \sum_{k=0}^{N-1} f(x_{k}) T_{J}(x_{k}) \\ = \frac{2}{N} \sum_{k=0}^{N-1} f\left(\cos\frac{\pi(k+\frac{1}{2})}{N}\right) \cos\frac{\pi(k+\frac{1}{2})}{N}$$

• The approximation is then

$$f(x) \approx p(x) = \left[\sum_{k=1}^{N-1} c_k T_k(x)\right] - \frac{1}{2}c_0$$

- which is an exact match in terms of zero crossings
- the errors are uniformly distributed over [-1, 1]

Oct 2023

Warping coordinated

• If the domain is different from [-1,1] the variable can be changed from [a,b]

$$y = \frac{x - \frac{1}{2}(b - a)}{\frac{1}{2}(b - a)}$$

the approximated can be mapped forward / back as needed

Outline

Introduction
 Uniform approximation
 Chebyshev Approximation
 Truncated Power Series
 Summary

Truncated Power Series

H. I. Christensen (UCSD)

• The uniform error of the Chebyshev functions/series implies that one can use a limited number of terms

Math for Robotics

• Say you have a series

$$f(x) = \frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16} + \dots$$

- fitting a polynomial function and trying to achieve $\epsilon < 10^{-9}$ would require more than 30 terms
- If we use a Chebyshev approximation
 - **(**) Compute enough terms to have $\epsilon < T$ across series
 - 2 Change variable to [-1, 1]
 - Sind Chebyshev series that satisfy error
 - Truncate series using $c_k T_k(x)$ as an estimated error residential
 - Sonvert back to polynomial form
 - Onvert back to original coordinate range
- For the example the reduction is from 30 to 9 terms

Oct 2023

Outline

Introduction
 Uniform approximation
 Chebyshev Approximation
 Truncated Power Series

5 Summary

H. I. Christensen (UCSD)

Math for Robotics

Oct 2023

27 / 30

Functional approximation and interpolation

- Frequently using a functional approximation is much more effective and it adds semantic information (a class) to the data approximation
- The are quite a few functional approximation forms
- Giving a few examples from polynomial, π_n , form to periodic function
- A key consideration is what domain knowledge is available to guide model selection

H. I. Christensen (UCSD)	Math for Robotics	Oct 2023	29 / 30

Questions