CSE276C - Root Finding

Henrik I. Christensen

Computer Science and Engineering University of California, San Diego
http://cri.ucsd.edu

October 2022

Outline

(1) Introduction
(2) Bracketing

- Bi-section
- Secant
- Regula Falsi / False Position
(3) Root Finding
- Brent's Method
- Newton-Raphson's Method
(4) Summary
(5) Polynomial Roots - Introduction
(6) Roots of Low Order Polynomials
(7) Root Counting
(8) Deflation
(9) Newton's Method
(10) Müller's Method
(11) Summary

Introduction

- Root finding or detection of zero-crossings, i.e., $f(x)=0$
- Numerous applications in robotics
(1) Numerical solution to inverse kinematics
(2) Collision detection in planning and navigation
(3) Detection of optimal control strategies
- Two main cases:
(1) Non-linear systems
(2) Polynomial systems - factorization

Outline

(1) Introduction
(2) Bracketing

- Bi-section
- Secant
- Regula Falsi / False Position
(3) Root Finding
- Brent's Method
- Newton-Raphson's Method
(4) Summary
(5) Polynomial Roots - Introduction
(6) Roots of Low Order Polynomials
(7) Root Counting
(8) Deflation
(9) Newton's Method
(10) Müller's Method
(11) Summary

Braketing

- First problem is to know where to look for roots.
- What would be your strategy?

Braketing

- First problem is to know where to look for roots.
- What would be your strategy?
- Can we identify an interval $[a, b]$ where $f(x)$ changes sign, i.e:

$$
f(a) f(b)<0
$$

- Once we have an interval/bracket we can refine the strategy
- Good strategies?
- Hill climbing/decent
- Sampling
- Model information

Bracketing

- Consider this function, what would be your strategy?

Bisection

- Given $a, b, f(a), f(b)$ evaluate f at

$$
c=\frac{a+b}{2}
$$

decision

$$
f(a) f(c)<0 \quad ? \quad \begin{cases}\text { Yes } & I_{\text {new }}=[a, c] \\ \text { No } & I_{\text {new }}=[c, b]\end{cases}
$$

Bisection convergence

- The interval size is changing

$$
s_{n+1}=\frac{s_{n}}{2}
$$

- number of evaluations is

$$
n=\log _{2} \frac{s_{0}}{s}
$$

- Convergence is considered linear as

$$
s_{n+1}=\text { const } s_{n}^{m}
$$

with $\mathrm{m}=1$.

- When $m>1$ convergence is termed super linear

Secant Method

- If you have a smooth function. Take $a, b, f(a), f(b)$
- Computer intersection point

$$
\begin{gathered}
\Delta=\frac{f(a)-f(b)}{a-b} \\
c \Delta+f(a)=0 \Leftrightarrow c=\frac{-f(a)}{\Delta}
\end{gathered}
$$

so $d=a+c$
repeat for convergence

Secant Method

- The Secant Method is not gauranteed to pick the two points with opposite sign
- Secant is super-linear with a convergence rate of

$$
\lim _{k \rightarrow \infty}\left|s_{k+1}\right|=\text { const }\left|s_{k}\right|^{1.618}
$$

- When could we be in trouble?

Secant Method

- The Secant Method is not gauranteed to pick the two points with opposite sign
- Secant is super-linear with a convergence rate of

$$
\lim _{k \rightarrow \infty}\left|s_{k+1}\right|=\text { const }\left|s_{k}\right|^{1.618}
$$

- When could we be in trouble?
- When you have major changes in the 2nd derivative close to root

Regula Falsi / false position

- Principle similar to Secant
- Always choose the interval with end-point of opposite sign
- Regula-falsi also has super-linear convergence, but harder to show

Outline

(1) Introduction
(2) Bracketing

- Bi-section
- Secant
- Regula Falsi / False Position
(3) Root Finding
- Brent's Method
- Newton-Raphson's Method
(4) Summary
(5) Polynomial Roots - Introduction
(6) Roots of Low Order Polynomials
(7) Root Counting
(8) Deflation
(9) Newton's Method
(10) Müller's Method
(11) Summary

Brent's Method

- We can leverage methods from interpolation theory
- Assume we have three points $(a, f(a)),(b, f(b)),(c, f(c))$
- We can leverage Lagrange's method

$$
x=\frac{\frac{(y-f(a))(y-f(b)) c}{(f(c)-f(a))(f(c)-f(b))}+}{} \begin{aligned}
& \frac{(y-f(b))(y-f(c)) a}{(f(a)-f(b))(f(a)-f(c))}+ \\
& \\
& \\
& \frac{(y-f(c)(y-f(a)) b}{(f(b)-f(c))(f(b)-f(A))}
\end{aligned}
$$

- if we set $y=0$ and solve for x we get

$$
x=b+\frac{P}{Q}
$$

- where $R=f(b) / f(c), S=f(b) / f(a), T=f(a) / f(c)$

Brent's Method (cont)

- such that

$$
\begin{array}{lc}
P= & S(T(R-T)(c-b)-(1-R)(b-a)) \\
Q= & (T-1)(R-1)(S-1)
\end{array}
$$

- So b is expected to be "the estimate" and $\frac{P}{Q}$ is a correction term.
- When $\frac{P}{Q}$ is too small it is replaced by a bi-section step
- Brent is generally considered the recommended method.

Newton Rapson's Method

- How can we use access to 1st order gradient information?
- For well behaved functions we can use a Taylor approximation

$$
f(x+\delta) \approx f(x)+f^{\prime}(x) \delta+\frac{f^{\prime \prime}(x)}{2} \delta^{2}+\ldots
$$

- for a small δ and well behaved functions higher order terms are small
- if $f(x+\delta)=0$ we have

$$
\begin{aligned}
f(x)+f^{\prime}(x) \delta & =0 \underset{~}{\Leftrightarrow} \\
\delta & =-\frac{f(x)}{f^{\prime}(x)}
\end{aligned}
$$

- A search strategy is then

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Newton-Raphson - Notes

- In theory one can approximate the gradient

$$
f^{\prime}(x)=\frac{f(x+d x)-f(x)}{d x}
$$

- For many cases this may not be a good approach
(1) for $\delta \gg 0$ the linearity assumption is weak
(2) For $\delta \approx 0$ the numerical accuracy can be challenging

Multi-variate Newton Raphson

- What is we have to solve

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

- A simple example

$$
f_{i}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) i=0, \ldots, n-1
$$

we get

$$
f_{i}(\vec{x}+\delta \vec{x})=f_{i}(\vec{x})+\sum_{j=0}^{n-1} \frac{\partial f_{i}}{\partial x_{j}} \delta \vec{x}+O\left(\delta \vec{x}^{2}\right)
$$

Multi-variate case

- The matrix of partial derivatives

$$
J_{i j}=\frac{\partial f_{i}}{\partial x_{j}}
$$

- is termed the Jacobian.
- We can now formulate

$$
f_{i}(\vec{x}+\delta \vec{x})=f_{j}(\vec{x})+J \delta \vec{x}+O\left(\delta \vec{x}^{2}\right)
$$

- we can then as before rewrite

$$
J \delta \vec{x}=-f \text { solve w. LU }
$$

or

$$
\vec{x}_{\text {new }}=x_{\text {old }}+\delta \vec{x}
$$

for some cases an improved strategy is

$$
\vec{x}_{\text {new }}=x_{\text {old }}+\lambda \delta \vec{x}
$$

where $\lambda \in[0,1]$ to control convergence

Outline

(1) Introduction
(2) Bracketing

- Bi-section
- Secant
- Regula Falsi / False Position
(3) Root Finding
- Brent's Method
- Newton-Raphson's Method
(4) Summary
(5) Polynomial Roots - Introduction
(6) Roots of Low Order Polynomials
(7) Root Counting
(8) Deflation
(9) Newton's Method
(10) Müller's Method
(11) Summary

Summary

- Simple search strategies for detect zeros / roots
- Bracketing is essential to determine the locations to search
- Brent's method in general robust strategy for root finding
- Newton-Raphson effective (for small δ) and when gradient info is available
- Generalization in most cases is relative straight forward

Questions

Questions

Roots of polynomials

Roots of Polynomials

Outline

(1) Introduction
(2) Bracketing

- Bi-section
- Secant
- Regula Falsi / False Position
(3) Root Finding
- Brent's Method
- Newton-Raphson's Method
(4) Summary
(5) Polynomial Roots - Introduction
(6) Roots of Low Order Polynomials
(7) Root Counting
(8) Deflation
(9) Newton's Method
(10) Müller's Method
(11) Summary

Introduction

- Earlier we looked at direct search for roots
- Bracketing was the way to limit the search domain
- Brent's method was a simple strategy to do search
- What if we have a polynomial?
(1) Can we find the roots?
(2) Can we simplify the polynomial?
- Lets explore this

Outline

(1) Introduction
(2) Bracketing

- Bi-section
- Secant
- Regula Falsi / False Position
(3) Root Finding
- Brent's Method
- Newton-Raphson's Method

4 Summary
(5) Polynomial Roots - Introduction
(6) Roots of Low Order Polynomials
(7) Root Counting
(8) Deflation
(9) Newton's Method
(10) Müller's Method
(11) Summary

Low order polynomials

- We have closed form solutions to roots of polynomials up to degree 4
- Quadratics

$$
a x^{2}+b x+c=0, a \neq 0
$$

has two roots

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

we have real unique, dual or imaginary solutions

Cubics

- The cubic equation

$$
x^{3}+p x^{2}+q x+r=0
$$

can be reduced using substitution

$$
x=y-\frac{p}{3}
$$

to the form

$$
y^{3}+a y+b=0
$$

where

$$
\begin{aligned}
& a=\frac{1}{3}\left(3 q-p^{2}\right) \\
& b=\frac{1}{27}\left(2 p^{3}-9 p q+27 r\right)
\end{aligned}
$$

the condensed form has 3 roots

$$
\begin{aligned}
& y_{1}=A+B \\
& y_{2}=-\frac{1}{2}(A+B)+\frac{i \sqrt{3}}{2}(A-B) \\
& y_{3}=-\frac{1}{2}(A+B)-\frac{i \sqrt{3}}{2}(A-B)
\end{aligned}
$$

where

$$
A=\sqrt[3]{-\frac{b}{2}+\sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}}} \quad B=\sqrt[3]{-\frac{b}{2}-\sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}}}
$$

Cubic (cont)

- We have three cases:
(1) $\frac{b^{2}}{4}+\frac{a^{3}}{27}>0$: one real root and two conjugate roots
(2) $\frac{b^{2}}{4}+\frac{a^{3}}{27}=0$: three real roots of which at least two are equal
(3) $\frac{b^{2}}{4}+\frac{a^{3}}{27}<0$: three real roots and unequal roots

Quartics

- For the equation

$$
x^{4}+p x^{3}+q x^{2}+r x+s=0
$$

we can apply a similar trick

$$
x=y-\frac{p}{4}
$$

to get

$$
y^{4}+a y^{2}+b y+c=0
$$

where

$$
\begin{aligned}
& a=q-\frac{3 p^{2}}{8} \\
& b=r+\frac{p^{3}}{8}-\frac{p q}{2} \\
& c=s-\frac{4 p^{4}}{256}+\frac{p^{2} q}{16}-\frac{p r}{4}
\end{aligned}
$$

Quartics (cont.)

- The reduced equation can be factorized into

$$
z^{3}-q z^{2}+(p r-4 s) z+\left(4 s q-r^{2}-p^{2} s\right)=0
$$

if we can estimate z_{1} of the above cubic then

$$
\begin{aligned}
& x_{1}=-\frac{p}{4}+\frac{1}{2}(R+D) \\
& x_{2}=-\frac{p}{4}+\frac{1}{2}(R-D) \\
& x_{3}=-\frac{p}{4}-\frac{1}{2}(R+E) \\
& x_{4}=-\frac{p}{4}-\frac{1}{2}(R-D)
\end{aligned}
$$

where

$$
\begin{aligned}
& R=\sqrt{\frac{1}{4} p^{2}-q+z_{1}} \\
& D=\sqrt{\frac{3}{4} p^{2}-R^{2}-2 Q+\frac{1}{4}\left(4 p q-8 r-p^{3}\right) R^{-1}} \\
& E=\sqrt{\frac{3}{4} p^{2}-R^{2}-2 Q-\frac{1}{4}\left(4 p q-8 r-p^{3}\right) R^{-1}}
\end{aligned}
$$

Outline

(1) Introduction
(2) Bracketing

- Bi-section
- Secant
- Regula Falsi / False Position
(3) Root Finding
- Brent's Method
- Newton-Raphson's Method

4 Summary
(5) Polynomial Roots - Introduction
(6) Roots of Low Order Polynomials
(7) Root Counting
(8) Deflation
(9) Newton's Method
(10) Müller's Method
(11) Summary

Root Counting

- Consider a polynomial of degree n :

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

- if a_{i} are real the roots are real or complex conjugate pairs.
- $p(x)$ has n roots
- Descartes rules of sign:
- "The number of positive real zeroes in a polynomial function $p(x)$ is the same or less than by an even numbers as the number of changes in the sign of the coefficients. The number of negative real zeroes of the $p(x)$ is the same as the number of changes in sign of the coefficients of the terms of $\mathrm{p}(-\mathrm{x})$ or less than this by an even number"
- Consider

$$
p(x)=x^{5}+4 x^{4}-3 x^{2}+x-6
$$

- So it must have 3 or 1 postive root and
- and it must have 2 or 0 negative roots

Sturms theorem

- We can derive a sequence of polynomials
- Let $\mathrm{f}(\mathrm{x})$ be a polynomial. Denote the original $f_{0}(x)$ and the derivative $f^{\prime}(x)=f_{1}(x)$. Consider

$$
\begin{aligned}
f_{0}(x) & =q_{1}(x) f_{1}(x)-f_{2}(x) \\
f_{1}(x) & =q_{2}(x) f_{2}(x)-f_{3}(x) \\
& \vdots \\
f_{k-2}(x) & =q_{k-1}(x) f_{k-1}(x)-f_{k}(x) \\
f_{k-1}(x) & =q_{k}(x) f_{k}(x)
\end{aligned}
$$

- The theorem
- The number of distinct real zeros of a polynomial $f(x)$ with real coefficients in (a, b) is equal to the excess of the number of changes of sign in the sequence $f_{0}(a), \ldots, f_{k 1}(a), f_{k}(a)$ over the number of changes of sign in the sequence $f_{0}(b), \ldots, f_{k 1}(b), f_{k}(b)$.

Sturm - example

- Consider the polynomial

$$
x^{5}+5 x^{4}-20 x^{2}-10 x+2=0
$$

The Sturm functions are then

$$
\begin{aligned}
& f_{0}(x)=x^{5}+5 x^{4}-20 x^{2}-10 x+2 \\
& f_{1}(x)=x^{4}+4 x^{3}-8 x-2 \\
& f_{2}(x)=x^{3}+3 x^{2}-1 \\
& f_{3}(x)=3 x^{2}+7 x+1 \\
& f_{4}(x)=17 x+11 \\
& f_{5}(x)=1
\end{aligned}
$$

Sturm example (cont)

	$-\infty$	-10	-5	-4	-3	-2	-1	0	1	2	5	10	∞
f_{0}	-	-	-	-	+	-	-	+	-	+	+	+	+
f_{1}	+	+	+	+	-	-	-	-	-	+	+	+	+
f_{2}	-	-	-	-	-	+	+	-	+	+	+	+	+
f_{3}	+	+	+	+	+	-	-	+	+	+	+	+	+
f_{4}	-	-	-	-	-	-	-	+	+	+	+	+	+
f_{5}	+	+	+	+	+	+	+	+	+	+	+	+	+
var.	5	5	5	5	4	3	3	2	1	0	0	0	0

- So roots between (-4, -3$),(-3,-2),(-1,0),(0,1)$ and $(1,2)$

Outline

(1) Introduction
(2) Bracketing

- Bi-section
- Secant
- Regula Falsi / False Position
(3) Root Finding
- Brent's Method
- Newton-Raphson's Method

4 Summary
(5) Polynomial Roots - Introduction
(6) Roots of Low Order Polynomials
(7) Root Counting
(8) Deflation
(9) Newton's Method
(10) Müller's Method
(11) Summary

Deflation

- Once you have a root r you can deflate a polynomial

$$
p(x)=(x-r) q(x)
$$

- As the degree decreases the complexity of root finding is simplified.
- One can use Horner's scheme

$$
p(x)=b_{0}+(x-r)\left(b_{n} x^{n-1}+\ldots+b_{2} x+b_{1}\right)
$$

as r is a root $b_{0}=0$ so

$$
q(x)=b_{n} x^{n-1}+\ldots+b_{2} x+b_{1}
$$

Outline

(1) Introduction
(2) Bracketing

- Bi-section
- Secant
- Regula Falsi / False Position
(3) Root Finding
- Brent's Method
- Newton-Raphson's Method

4 Summary
(5) Polynomial Roots - Introduction
(6) Roots of Low Order Polynomials
(7) Root Counting
(8) Deflation
(9) Newton's Method
(10) Müller's Method
(11) Summary

Newton's Method

- Remember we can do root search/refinement

$$
x_{k+1}=x_{k}-\frac{p\left(x_{k}\right)}{p^{\prime}(x)}
$$

we know that

$$
p(x)=p(t)+(x-t) q(x)
$$

So $p^{\prime}(t)=q(t)$ or

$$
q(x)=\frac{p(x)}{x-t}
$$

- If $p(x)$ has double roots it could be a challenge

Outline

(1) Introduction
(2) Bracketing

- Bi-section
- Secant
- Regula Falsi / False Position
(3) Root Finding
- Brent's Method
- Newton-Raphson's Method
(4) Summary
(5) Polynomial Roots - Introduction
(6) Roots of Low Order Polynomials
(7) Root Counting
(8) Deflation
(9) Newton's Method
(10) Müller's Method
(11) Summary

Müllers Method

- Newton's Method is local and sensitive to seed guess
- Müllers method is more global
- Based on a quadratic interpolation
- Assume you have three estimates of the root: x_{k-2}, x_{k-1}, x_{k}
- Interpolation polynomial

$$
p(x)=f\left(x_{k}\right)+f\left[x_{k-1}, x_{k}\right]\left(x-x_{k}\right)+f\left[x_{k-2}, x_{k-1}, x_{k}\right]\left(x-x_{k}\right)\left(x-x_{k-1}\right)
$$

- Using the equality

$$
\left(x-x_{k}\right)\left(x-x_{k-1}\right)=\left(x-x_{k}\right)^{2}+\left(x-x_{k}\right)\left(x_{k}-x_{k-1}\right)
$$

we get

$$
p(x)=f\left(x_{k}\right)+b\left(x-x_{k}\right)+a\left(x-x_{k}\right)^{2}
$$

which we can solve for $p(x)=0$

Outline

(1) Introduction
(2) Bracketing

- Bi-section
- Secant
- Regula Falsi / False Position
(3) Root Finding
- Brent's Method
- Newton-Raphson's Method
(4) Summary
(5) Polynomial Roots - Introduction
(6) Roots of Low Order Polynomials
(7) Root Counting
(8) Deflation
(9) Newton's Method
(10) Müller's Method
(11) Summary

Summary

- Frequently using a polynomial refactorization is more stable
- A way to compress data into a semantic form
- For lower order polynomials we have closed for solutions
- We can use Descartes rules, ... to bracket roots
- We can find roots and reduce polynomials
- Newton's method is a simple local rule, but could be noisy
- Mullers method is a way to solve it more generally
- Lots of methods available for special cases

