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Introduction

We have discussed approximation and root finding. We can leverage these
methods to study optimization.

Most of robotics is about optimization

Best trajectory between two points

Best fit of a model to a swarm of data

Optimal coverage of an area for fire monitoring

Energy e�cient travel from San Diego to Hawaii by water

H. I. Christensen (UCSD) Math for Robotics Oct 2023 3 / 36

Literature

Numerical Recipes: Chapter 10

Numerical Renaissance: Chap 14-16. (Part III)
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Example 1

Optimization of trajectories at high speed

H. I. Christensen (UCSD) Math for Robotics Oct 2023 5 / 36

Path Planning

Example potential field
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Optimization

So what is optimization?

Finding extrema for a function over a domain

Minimum or maximum is immaterial as we can use f or -f

In many cases we will have local and global extrema

Consider both deterministic and stochastic approaches
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Golden section

For bracketing of roots we use bi-section as a basis.

We can use a similar technique to find an extremum

We need two points to bracket a root!

How many points do we need to bracket an extremum?

We need three points to bracket.

If we have a triplet a < b < c . I↵ f(b) is smaller than f(a) and f(c), then we
have a minimum within [a, c]
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Golden Section

Pick a point between (a,b) or (b,c) and evaluate

Suppose x 2 (b, c) and f (x) < f (b) then our new triple is (b, x, c)

Consider the function

How would you choose a new value of x?
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Golden Section (cont.)

Consider (a, b, c)
b�a
c�a = w c�b

c�a = 1� w

Lets assume x 2 (b, c) and
x � b

c � a
= z

The next bracket is then w+z or 1-w

If we want to make the intervals equal

z = 1� 2w when w <
1

2

z should be the same distance from b and c and b is from a and c
z

1� w
= w

we can rewrite to replace z and get the equation

w2 � 3w + 1 = 0 ) w =
3�

p
5

2
⇡ 0.38197

Widely used to select iteration strategies
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Parabolic Interpolation

We covered Brent’s method in root finding and in interpolation

If we have a triple (a, b, c) and the values f(a), f(b), f(c) we can generate a
2nd order interpolation

x = b � 1

2

(b � a)2[f (b)� f (c)]� (b � c)2[f (b)� f (a)]

(b � a)[f (b)� f (c)]� (b � c)[f (b)� f (a)]

When would this fail?

When the triple pair is co-linear!

The remedy is to use golden section when a co-linear case is seen
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1-D search w. derivative information

If we have the triple (a, b, c) and f(a), f(b), f(c)

In addition we have f’(b)

You can use the sign of f’(b) to choose the next bracket
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Simplex Method

Assume we have no gradient information or access to formal model.

A simplex is N dimensions is composed of N+1 points. Connected by straight
lines

A 2D simplex is a triangle

A 3D simplex is a tetrahedron.

We have N+1 points x1, . . . , xN+1
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Downhill Simplex Algorithm

Initial simple
Order the values of the vertices: f (x1)  f (x2)  . . .  f (xN+1)

Compute x0, the centroid of all points except xN+1

Reflection compute xr = x0 + ↵(x0 � xN+1), with ↵ > 0 if the reflection is
better than f (xN�1) replace. Restart

Expansion if f (xr ) < f (x1) compute xe = x0 + �(xr � x0) if f (xe) < f (xr )
replace xN+1 else replace xN+1 with xr . Restart

Contraction If f (xr ) > f (xN) compute xc = x0 + ⇢(xN+1 � x0) with ⇢ < .5.
If f (xc) < f (xN+1) replace and restart

Shrink Replaces all points except x1 with xi = x1 + �(xi � x1) and restart

Terminate when update is below a threshold.
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Simplex illustration
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Powell’s Method

Assume you have an n-dimensional function f (~x) and a starting point P0.
We can use the local gradient to search for an extremum
We can generate a new estimate

Pnew = Pold + �~n

Locally we can generate a Taylor expansion

f (x) = f (P) +
X

i

@f

@xi
xi +

1

2

X

ij

@2f

@xi@xj
xixj + . . .

or

f (x) ⇡ ~c � b~x +
1

2
~xTA~x

where
~c = f (P)
b = �rfP
Aij = @2f

@xi@xj
Hessian Matrix

Also remember
rf = Ax � b

at an extremum
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Powell’s Method

Initialize N unit vectors
ui = ei i 2 1...N

1 Start at point P0

2 For i=1 to N

3 Move along Pi from Pi�1 along ui
4 New ui = ui+1

5 Set uN = Pn � P0

6 Move Pn to minimum value

7 Make P0 = Pn

Might generate linear degenerate solutions
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Conjugate gradient descent

If we have the gradient from

f (x) ⇡ ~c � b~x +
1

2
~xTA~x

We can do a steepest descent
1 Start at P0

2 Compute rf (Pi )

3 move in the direction of gradient to point Pi

4 repeat

We can construct a set of conjugate vectors

gi+1 = gi � �Ahi
hi+1 = gi+1 + �ihi
�i = gi gj

hiAhi
�i = gi+1gi+1

gi gi
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Stochastic Search

So far we have used direct functional values for optimization.

The search has been deterministic

Sometimes the search space is too large

What if we use a sampling based approach?

Some possible examples
Traveling salesman

Layout of silicon for chips

Loosely based on Boltzmann distribution

P(E ) = exp(�E/kT )

where E is energy/entropy, T is temperature, and k is the Boltzmann
constant.

H. I. Christensen (UCSD) Math for Robotics Oct 2023 24 / 36



Metropolis Algorithm

Transformed into an algorithm by 1953 by Metropolis

Algorithm

Let s = s0
For k = 0 to kmax

T = temperature(k/kmax

Pick random neighbor snew = neighbor(T )

If (P(S ,T )  random(0, 1)
s = snew

Return S
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Simulated Annealing

1 Description of possible configurations
2 A way to generate random perturbation of a configuration
3 An objective function whose minimization is the objective
4 A control variable that is lowered over times.
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Example - traveling salesman

A salesman has to visit N cities at locations (xi , yi ) returning to the original
city

Each city to be visited only once

Minimize the travel route

Problem in the optimal sense is known to be NP-hard.
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Simple Example - Traveling Salesman
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Dynamic Programming

So far we have considered functional optimization and stochastic optimization

What if we have a limited set of action to optimize across?

Say optimizing a set of actions to traverse a graph?

A strategy to could be
Generate a cost-map across the state space

Backtrack to find the optimal set of actions
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Dynamic programming

A number of di↵erent names / approaches has been used
Bellman, Dijkstra, Viterbi, ...

Selection a state space for optimization

Identifying a set of possible actions

Formulation of an objective function
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Example navigation
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Example navigation
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Summary

Optimization is a key objective in robotics
Robotics is many cases is about formulation of a graph

Optimization of an objective function across the graph

Considered deterministic and stochastic approaches to optimization

Covered the basics and gave an impression of the fundamentals
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Questions

Questions
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