CSE276C - Optimization

Henrik I. Christensen

Computer Science and Engineering University of California, San Diego http://cri.ucsd.edu

October 2023

Outline

(1) Introduction
(2) Bracket based methods
(3) Downhill Simplex

4 Powell's Method
(5) Conjugate Descent/Gradient

6 Stochastic Search
(7) Dynamic Programming
(8) Summary

Introduction

- We have discussed approximation and root finding. We can leverage these methods to study optimization.
- Most of robotics is about optimization
- Best trajectory between two points
- Best fit of a model to a swarm of data
- Optimal coverage of an area for fire monitoring
- Energy efficient travel from San Diego to Hawaii by water

Literature

- Numerical Recipes: Chapter 10
- Numerical Renaissance: Chap 14-16. (Part III)

Example 1

- Optimization of trajectories at high speed

Path Planning

- Example potential field

Optimization

- So what is optimization?

Optimization

- So what is optimization?
- Finding extrema for a function over a domain
- Minimum or maximum is immaterial as we can use f or - f
- In many cases we will have local and global extrema
- Consider both deterministic and stochastic approaches

Outline

(1) Introduction
(2) Bracket based methods

3 Downhill Simplex
4 Powell's Method
(5) Conjugate Descent/Gradient
(6) Stochastic Search
(7) Dynamic Programming
(8) Summary

Golden section

- For bracketing of roots we use bi-section as a basis.
- We can use a similar technique to find an extremum
- We need two points to bracket a root!
- How many points do we need to bracket an extremum?

Golden section

- For bracketing of roots we use bi-section as a basis.
- We can use a similar technique to find an extremum
- We need two points to bracket a root!
- How many points do we need to bracket an extremum?
- We need three points to bracket.
- If we have a triplet $a<b<c$. Iff $f(b)$ is smaller than $f(a)$ and $f(c)$, then we have a minimum within $[a, c]$

Golden Section

- Pick a point between (a, b) or (b,c) and evaluate
- Suppose $x \in(b, c)$ and $f(x)<f(b)$ then our new triple is (b, x, c)
- Consider the function

- How would you choose a new value of x ?

Golden Section (cont.)

- Consider (a, b, c)

$$
\frac{b-a}{c-a}=w \quad \frac{c-b}{c-a}=1-w
$$

- Lets assume $x \in(b, c)$ and

$$
\frac{x-b}{c-a}=z
$$

- The next bracket is then $w+z$ or $1-\mathrm{w}$

Golden Section (cont.)

- Consider (a, b, c)

$$
\frac{b-a}{c-a}=w \quad \frac{c-b}{c-a}=1-w
$$

- Lets assume $x \in(b, c)$ and

$$
\frac{x-b}{c-a}=z
$$

- The next bracket is then $w+z$ or $1-w$
- If we want to make the intervals equal

$$
z=1-2 w \text { when } w<\frac{1}{2}
$$

- z should be the same distance from b and c and b is from a and c

$$
\frac{z}{1-w}=w
$$

- we can rewrite to replace z and get the equation

$$
w^{2}-3 w+1=0 \Rightarrow w=\frac{3-\sqrt{5}}{2} \approx 0.38197
$$

- Widely used to select iteration strategies

Parabolic Interpolation

- We covered Brent's method in root finding and in interpolation
- If we have a triple (a, b, c) and the values $f(a), f(b), f(c)$ we can generate a 2nd order interpolation

$$
x=b-\frac{1}{2} \frac{(b-a)^{2}[f(b)-f(c)]-(b-c)^{2}[f(b)-f(a)]}{(b-a)[f(b)-f(c)]-(b-c)[f(b)-f(a)]}
$$

- When would this fail?

Parabolic Interpolation

- We covered Brent's method in root finding and in interpolation
- If we have a triple (a, b, c) and the values $f(a), f(b), f(c)$ we can generate a 2nd order interpolation

$$
x=b-\frac{1}{2} \frac{(b-a)^{2}[f(b)-f(c)]-(b-c)^{2}[f(b)-f(a)]}{(b-a)[f(b)-f(c)]-(b-c)[f(b)-f(a)]}
$$

- When would this fail?
- When the triple pair is co-linear!
- The remedy is to use golden section when a co-linear case is seen

1-D search w. derivative information

- If we have the triple (a, b, c) and $f(a), f(b), f(c)$
- In addition we have f'(b)
- You can use the sign of $f^{\prime}(b)$ to choose the next bracket

Outline

(1) Introduction
(2) Bracket based methods
(3) Downhill Simplex

4 Powell's Method
(5) Conjugate Descent/Gradient
(6) Stochastic Search
(7) Dynamic Programming
(8) Summary

Simplex Method

- Assume we have no gradient information or access to formal model.
- A simplex is N dimensions is composed of $\mathrm{N}+1$ points. Connected by straight lines
- A 2D simplex is a triangle
- A 3D simplex is a tetrahedron.
- We have $\mathrm{N}+1$ points x_{1}, \ldots, x_{N+1}

Downhill Simplex Algorithm

- Initial simple
- Order the values of the vertices: $f\left(x_{1}\right) \leq f\left(x_{2}\right) \leq \ldots \leq f\left(x_{N+1}\right)$
- Compute x_{0}, the centroid of all points except x_{N+1}
- Reflection compute $x_{r}=x_{0}+\alpha\left(x_{0}-x_{N+1}\right)$, with $\alpha>0$ if the reflection is better than $f\left(x_{N-1}\right)$ replace. Restart
- Expansion if $f\left(x_{r}\right)<f\left(x_{1}\right)$ compute $x_{e}=x_{0}+\gamma\left(x_{r}-x_{0}\right)$ if $f\left(x_{e}\right)<f\left(x_{r}\right)$ replace x_{N+1} else replace x_{N+1} with x_{r}. Restart
- Contraction If $f\left(x_{r}\right)>f\left(x_{N}\right)$ compute $x_{C}=x_{0}+\rho\left(x_{N+1}-x_{0}\right)$ with $\rho<.5$. If $f\left(x_{C}\right)<f\left(x_{N+1}\right)$ replace and restart
- Shrink Replaces all points except x_{1} with $x_{i}=x_{1}+\sigma\left(x_{i}-x_{1}\right)$ and restart
- Terminate when update is below a threshold.

Simplex illustration

Downhill Simplex Method

Intial simplex with vertices a, b, c, so that $f($ a) $<f$ (b) $<f$ (c)

Reflection \& contraction: d-p $=-1 / 2(\mathbf{c}-\mathbf{p})$ with d-c perpendicular to \mathbf{b}-a.

Reflection:
d-p $=-(\mathbf{c}-\mathrm{p})$ with d-c perpendicular to \mathbf{b}-a.

Contraction:
$\mathbf{d}-\mathrm{p}=1 / 2(\mathrm{c}-\mathrm{p})$ with $\mathbf{d - c}$ perpendicular to \mathbf{b}-a.

Reflection \& expansion: d-p $=-2(\mathrm{c}-\mathrm{p})$ with d-c perpendicular to \mathbf{b}-a.

Multiple contraction: $(d-a) /(b-a)=(c-a) /(c-a)$

Outline

(1) Introduction
(2) Bracket based methods

3 Downhill Simplex
4 Powell's Method
(5) Conjugate Descent/Gradient

6 Stochastic Search
(7) Dynamic Programming
(8) Summary

Powell's Method

- Assume you have an n-dimensional function $f(\vec{x})$ and a starting point P_{0}.
- We can use the local gradient to search for an extremum
- We can generate a new estimate

$$
P_{\text {new }}=P_{\text {old }}+\lambda \vec{n}
$$

- Locally we can generate a Taylor expansion

$$
f(x)=f(P)+\sum_{i} \frac{\partial f}{\partial x_{i}} x_{i}+\frac{1}{2} \sum_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} x_{i} x_{j}+\ldots
$$

or

$$
f(x) \approx \vec{c}-b \vec{x}+\frac{1}{2} \vec{x}^{T} A \vec{x}
$$

where

$$
\begin{array}{rlc}
\vec{c} & = & f(P) \\
b & = & -\nabla f_{P} \\
A_{i j} & = & \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
\end{array} \text { Hessian Matrix }
$$

- Also remember

$$
\nabla f=A x-b
$$

Powell's Method

- Initialize N unit vectors

$$
u_{i}=e_{i} i \in 1 \ldots N
$$

(1) Start at point P_{0}
(2) For $\mathrm{i}=1$ to N
(3) Move along P_{i} from P_{i-1} along u_{i}
(4) New $u_{i}=u_{i+1}$
(5) Set $u_{N}=P_{n}-P_{0}$
(0) Move P_{n} to minimum value
(7) Make $P_{0}=P_{n}$

- Might generate linear degenerate solutions

Outline

(1) Introduction
(2) Bracket based methods

3 Downhill Simplex
4 Powell's Method
(5) Conjugate Descent/Gradient
(6) Stochastic Search
(7) Dynamic Programming
(8) Summary

Conjugate gradient descent

- If we have the gradient from

$$
f(x) \approx \vec{c}-b \vec{x}+\frac{1}{2} \vec{x}^{T} A \vec{x}
$$

- We can do a steepest descent
(1) Start at P_{0}
(2) Compute $\nabla f\left(P_{i}\right)$
(3) move in the direction of gradient to point P_{i}
(4) repeat
- We can construct a set of conjugate vectors

$$
\begin{aligned}
g_{i+1} & =g_{i}-\lambda A h_{i} \\
h_{i+1} & =g_{i+1}+\gamma_{i} h_{i} \\
\lambda_{i} & =\frac{g_{i} g_{j}}{h_{i} A h_{i}} \\
\gamma_{i} & =\frac{g_{i+1} g_{i+1}}{g_{i} g_{i}}
\end{aligned}
$$

Outline

(1) Introduction
(2) Bracket based methods
(3) Downhill Simplex
(4) Powell's Method
(5) Conjugate Descent/Gradient
(6) Stochastic Search
(7) Dynamic Programming
(8) Summary

Stochastic Search

- So far we have used direct functional values for optimization.
- The search has been deterministic
- Sometimes the search space is too large
- What if we use a sampling based approach?
- Some possible examples
- Traveling salesman
- Layout of silicon for chips
- Loosely based on Boltzmann distribution

$$
P(E)=\exp (-E / k T)
$$

- where E is energy/entropy, T is temperature, and k is the Boltzmann constant.

Metropolis Algorithm

- Transformed into an algorithm by 1953 by Metropolis
- Algorithm
- Let $s=s_{0}$
- For $k=0$ to $k_{\text {max }}$
- $T=$ temperature $\left(k / k_{\max }\right.$
- Pick random neighbor $s_{\text {new }}=$ neighbor (T)
- If $(P(S, T) \leq \operatorname{random}(0,1)$
- $s=S_{\text {new }}$
- Return S

Simulated Annealing

(3) Description of possible configurations
(2) A way to generate random perturbation of a configuration
(- An objective function whose minimization is the objective
(1) A control variable that is lowered over times.

Example - traveling salesman

- A salesman has to visit N cities at locations $\left(x_{i}, y_{i}\right)$ returning to the original city
- Each city to be visited only once
- Minimize the travel route
- Problem in the optimal sense is known to be NP-hard.

Simple Example - Traveling Salesman

Input:

0
A

A non-optimal tour:
ABEDC

The optimal tour:
ABCDE

Outline

(1) Introduction
(2) Bracket based methods

3 Downhill Simplex
4 Powell's Method
(5) Conjugate Descent/Gradient

6 Stochastic Search
(7) Dynamic Programming
(8) Summary

Dynamic Programming

- So far we have considered functional optimization and stochastic optimization
- What if we have a limited set of action to optimize across?
- Say optimizing a set of actions to traverse a graph?
- A strategy to could be
- Generate a cost-map across the state space
- Backtrack to find the optimal set of actions

Dynamic programming

- A number of different names / approaches has been used
- Bellman, Dijkstra, Viterbi, ...
- Selection a state space for optimization
- Identifying a set of possible actions
- Formulation of an objective function

Example navigation

TRIVIAL EXAMPLE OF BELLMAN'S OPTIMALITY PRINCIPLE

Example navigation

Shortest Path: network figure

Outline

(1) Introduction
2) Bracket based methods
(3) Downhill Simplex

4 Powell's Method
(5) Conjugate Descent/Gradient
(6) Stochastic Search
(7) Dynamic Programming
(8) Summary

Summary

- Optimization is a key objective in robotics
- Robotics is many cases is about formulation of a graph
- Optimization of an objective function across the graph
- Considered deterministic and stochastic approaches to optimization
- Covered the basics and gave an impression of the fundamentals

Questions

Questions

