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Recognition of objects in clutter
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Recognition of objects in clutter
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Typical tasks

Where can I find a can of coke?

Check the stove – is it o↵?

Put away the groceries in the pantry?
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Object Representation

High-level Shape Models (e.g., Generalized Cylinders)
Idealized images

Texture Less

Mid-level Shape Models (e.g., CAD models, Superquadrics)
More complex

Well-defined geometry

Low-level Appearance Based Models (e.g., Eigenspaces)
Most complex

Complicated shapes
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A number of challenges
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Changes in illumination

H. I. Christensen (UCSD) Math for Robotics Oct 2023 10 / 62



The importance of context
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The importance of context - see
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Learning and recognition
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Appearance-based approaches

The abundance of image data gives a renewed interest in appearance-based
approaches

Combined e↵ort of:
Shape

Reflectance properties

Pose in the scene

Illumination conditions / variations

Acquired through an automatic learning phase

Well defined error characteristics
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Numerous use-cases

Face-recognition (eigen faces)

Visual inspection

Tracking and pose estimation for robotics

Basic object tracking

Planning of illumination

Image spotting

Mobile robot localization

. . .
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IDEA: Take a large number of image views
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IDEA: Subspace Methods

Images are represented as points in an N-dimensional space

Images only occupy a small fraction of the hyper-space

Characterize the subspace / manifold spanned by the images
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Multiple subspace methods

Optimal Reconstruction ) PCA

Optimal Separation ) LDA

Optimal Correlation ) CCA

Independent Factors ) ICA

Non-negative factorization ) NMF
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Image matching

⇢ =
xT y

||x ||||y || � ⇥

Or Normalized Images
||x � y ||2  �
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Eigenspace representation

Image set (normalized, zero mean)

X = [x0 x1 . . . xn�1]; X 2 Rm⇥n

Looking for ortho-normal basis

U = [u0 u1 . . . uk ]; k ⌧ n

Individual images are then a linear combination of basis vectors

xi ⇡ x̃i =
kX

j=0

qj(xi )uj

||x � y ||2 ⇡ ||
kX

j=0

qj(x)uj �
kX

j=0

qj(y)uj ||2

||
X

j

qj(x)� qj(y)||2
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Choosing a basis function?

The optimization problem

n�1X

i=0

||xi �
kX

j=0

qj(xi )uj ||2 ! min

Taking k eigenvectors with the largest eigenvalues

C = X XT = [x0 x1 . . . xn�1 ]

2

664

xT0
xT1
. . .
xTn�1

3

775

The PCA or Karhunen-Loeve Transform

Cui = �iui
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E�cient eigenspace computation

n ⌧ m

Computing the eigenvectors u0i i = 0, . . . , n-1 of the inner product matrix

Q = XTX =

2

664

xT0
xT1
. . .
xTn�1

3

775 [x0 x1 . . . xn�1 ];Q 2 Rn⇥n

The eigenvectors of XXT can be obtained using XXTXv 0
i = �0

iXv
0
i :

ui =
1p
�0
i

Xu0i
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Principal Component Analysis
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Principal Component Analysis
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PCA Image Representation
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Properties of PCA

Any point xi can be projected to an appropriate point qi by

qi = UT (xi � µ)

and conversely
Uqi + µ = xi
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Properties of PCA

It can be shown the MSE between xi and its reconstruction using m
eigenvectors is given by

NX

j=1

�j �
mX

j=1

�j =
NX

j=m+1

�j

PCA minimizes the reconstruction error

PCA maximizes the variance of projection

Find a “natural” coordinate system for the sample data
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PCA for visual recognition and pose estimation

Objects/images are represented as coordinates in an m-dimension space

An example
3D space with points representing objects on a manifold of parametric

eigenspace such as orientation, pose, illumination, ...
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PCA for visual recognition and pose estimation

Calculate coe�cients

Search for nearest point on manifold

Point determines / interpolates object and/or pose
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Coe�cient calculation

To recover ai the image is projected into the eigenspace

Complete image xi is required to calculate ai

Corresponds to a least square solution
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Linear Discriminate Analysis

PCA minimizes the projection error

PCA is unsupervised – no class information is used

Discriminating information may be used
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Linear Discriminate Analysis

For LDA would would like to
Maximize distance between classes

Minimize distance within classes

Fisher linear discriminant

⇢(W ) =
W TSBW

W TSWW
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LDA: Problem Formulation

n sample images: {x1, . . . , xn}
c classes: {�1, . . . ,�c}
Average of each class: µi =

1
ni

P
xk2�i

xk

Total average: µ = 1
n

PN
k=1 xk
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LDA: Practice

Scatter of class i: Si =
P

xk2�i
(xk � µi )(xk �mui )T

Within class scatter: SW =
Pc

i=1 Si

Between class scatter: SB =
Pc

i=1 |�i |(µi � µ)(µi � µ)T

Total scatter: ST = SW + SB
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LDA: Practice

After projection: yk = W T xk
Between class scatter of y: S̃B = W TSBW
Within class scatter of y: S̃W = W TSWW
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LDA Projection
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LDA characteristics

Maximization of

⇢(W ) =
W TSBW

W TSWW

given by solution of generalized eigenvalue problem

SBW = �SWW

The the c-class case we obtain c-1 projections as the largest eigenvalue of

SBWi = �SWWi
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LDA in the wild

How does one calculate LDA for high-dimensional images?

Problem: SW is always singular
Number of pixels in an image is larger than number of images in training set

Fisherfaces example: reduce dimensionality by doing a PCA first and then
LDA

Simultaneous diagonalization of SW and SB
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Ficherfaces

First published by Belhumeur et al 1997

Reduce dimensionality to n-c with PCA

UPCA = argmax
U

|UTQU| = [ u1 u2 . . . un�c ]

Further reduce to c-1 with LDA

WLDA = argmax
w

|W TW T
pcaSBWpcaW |

|W TW T
pcaSWWpcaW | = [ w1 w2 . . . wc�1 ]

The optimal projection is then

Wopt = W T
LDAU

T
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Example Fisherface

Example Fisherface of recognition face w/wo glasses (Belhumeur et al, 1997)
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Fisher example performance

Small comparison of face recognition (old data)

Significantly better performance than PCA for face recognition

Noise sensitive

Standard large scale Kaggle competitions today score 97%
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Canonical Correlation Analysis (CCA)

Also supervised method by motivated by regression / interpolation tasks such
as pose estimation

CCA related two sets of observations by determining pairs of directions that
yield maximum correlation between the data sets

Find a pair of directions (canonical factors): wx 2 RP and wy 2 Rq so that
the correlation of the projections c = wT

x x and d = wT
y y become maximal
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CCA - the details

⇢ =
E [cd ]p

E [c2] E [d2]
=

E [wT
x x y twy ]q

E [wT
x x xTwx ]E [wT

y y y twy ]
=

wT
x Cxywyq

wT
x CxxwxwT

y Cyywy
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CCA - computations

Finding solutions

w =


wx

wy

�
A =


0 Cxy

Cyx 0

�
B =


Cxx 0
0 Cyy

�

Compute the Rayleigh Quotient

r =
wTAw

wTBw

Think of it as a generalized eigenvalue problem

Aw = µBw
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CCA for images

Same challenge as for LDA

Computational analysis based on SVD

A = C
� 1

2
xx CxyC

� 1
2

yy

A = UDV T

wxi = C
� 1

2
xx ui

wyi = C
� 1

2
yy vi
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Properties of CCA

At most min(p, q, n) CCA factors

Invariant wrt to a�ne transformations

Orthogonality of the canonical factors

wT
xi Cxxwxj = 0

wT
yi Cyywyj = 0

wT
xi Cxywyj = 0
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CCA Example

Parametric eigenspace obtained by PCA for 2 DOF pose space
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Independent Component Analysis (ICA)

ICA is a powerful technique from signal processing (blind source separation)

Can we seen as an extension of PCA

PCA takes statistics up to 2nd order into account

ICA estimate components that are statistically independent

Generates sparse/local descriptors - sparse coding
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Independent Component Analysis (ICA)

m scalar variables - X = (x1, . . . xm)T

Assumed to be a linear mixture of n sources - S = (s1, ... sn)T

X = AS

Objective: Given X find estimates for A and S under the assumption S are
independent
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ICA Example
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ICA Example
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ICA Algorithms

Minimize a complex tensor function

Adaptive algorithms based on stochastic gradient
Measure independence

Computer A recursively to maximize independence

ICA only works for non-Gaussian sources

Often whitening of data is performance

ICA does not provide ordering

ICA components are not orthogonal

H. I. Christensen (UCSD) Math for Robotics Oct 2023 57 / 62

ICA noise suppression example

Example from Hyvärinen, 1999
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PCA vs ICA for face recognition

From Baek et al, 2002
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Summary

Brief overview of use of sub-space methods for data processing

The exact task should dictate the choice of methods

Other cascaded processing simplifies complexity

Good standard tools available in most signal processing toolboxes
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Questions

Questions
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