CSE276C - Subspace Methods

Henrik I. Christensen

Computer Science and Engineering University of California, San Diego
http://cri.ucsd.edu

October 2023

Literature

- Leonardis, A. and Bischof, H., 2000. "Robust recognition using eigenimages". Computer Vision and Image Understanding, 78(1), pp.99-118.
- Largely adopted from ECCV tutorial by Leonardis and Bischof

Outline

(1) Introduction
(2) Appearance based learning and recognition
(3) Appearance based method for visual object recognition

4 Principal Component Analysis
(5) Linear Discriminative Analysis
(6) Canonical Correlation Analysis
(7) Independent Component Analysis (ICA)
(8) Summary

Recognition of objects in clutter

Recognition of objects in clutter

Typical tasks

- Where can I find a can of coke?
- Check the stove - is it off?
- Put away the groceries in the pantry?

Outline

(1) Introduction
2) Appearance based learning and recognition

3 Appearance based method for visual object recognition
4 Principal Component Analysis
(5) Linear Discriminative Analysis
(6) Canonical Correlation Analysis
(7) Independent Component Analysis (ICA)
(8) Summary

Object Representation

- High-level Shape Models (e.g., Generalized Cylinders)
- Idealized images
- Texture Less
- Mid-level Shape Models (e.g., CAD models, Superquadrics)
- More complex
- Well-defined geometry
- Low-level Appearance Based Models (e.g., Eigenspaces)
- Most complex
- Complicated shapes

A number of challenges

Segmentation:

Pose/Shape:

Changes in illumination

The importance of context

The importance of context - see

Learning and recognition

Outline

(1) Introduction
2) Appearance based learning and recognition

3 Appearance based method for visual object recognition
4 Principal Component Analysis
(5) Linear Discriminative Analysis
(6) Canonical Correlation Analysis
(7) Independent Component Analysis (ICA)
(8) Summary

Appearance-based approaches

- The abundance of image data gives a renewed interest in appearance-based approaches
- Combined effort of:
- Shape
- Reflectance properties
- Pose in the scene
- Illumination conditions / variations
- Acquired through an automatic learning phase
- Well defined error characteristics

Numerous use-cases

- Face-recognition (eigen faces)
- Visual inspection
- Tracking and pose estimation for robotics
- Basic object tracking
- Planning of illumination
- Image spotting
- Mobile robot localization
- ...

IDEA: Take a large number of image views

IDEA: Subspace Methods

- Images are represented as points in an N-dimensional space
- Images only occupy a small fraction of the hyper-space
- Characterize the subspace / manifold spanned by the images

Multiple subspace methods

- Optimal Reconstruction \Rightarrow PCA
- Optimal Separation \Rightarrow LDA
- Optimal Correlation \Rightarrow CCA
- Independent Factors \Rightarrow ICA
- Non-negative factorization \Rightarrow NMF

Image matching

Or Normalized Images

$$
\|x-y\|^{2} \leq \Phi
$$

Eigenspace representation

- Image set (normalized, zero mean)

$$
X=\left[\begin{array}{llll}
x_{0} & x_{1} & \ldots & x_{n-1}
\end{array}\right] ; \quad X \in R^{m \times n}
$$

- Looking for ortho-normal basis

$$
U=\left[\begin{array}{llll}
u_{0} & u_{1} & \ldots & u_{k}
\end{array}\right] ; k \ll n
$$

- Individual images are then a linear combination of basis vectors

$$
\begin{gathered}
x_{i} \approx \tilde{x}_{i}=\sum_{j=0}^{k} q_{j}\left(x_{i}\right) u_{j} \\
\|x-y\|^{2} \approx\left\|\sum_{j=0}^{k} q_{j}(x) u_{j}-\sum_{j=0}^{k} q_{j}(y) u_{j}\right\|^{2} \\
\left\|\sum_{j} q_{j}(x)-q_{j}(y)\right\|^{2}
\end{gathered}
$$

Choosing a basis function?

- The optimization problem

$$
\sum_{i=0}^{n-1}\left\|x_{i}-\sum_{j=0}^{k} q_{j}\left(x_{i}\right) u_{j}\right\|^{2} \rightarrow \min
$$

- Taking k eigenvectors with the largest eigenvalues

$$
C=X X^{T}=\left[\begin{array}{llll}
x_{0} & x_{1} & \ldots & x_{n-1}
\end{array}\right]\left[\begin{array}{c}
x_{0}^{\top} \\
x_{1}^{T} \\
\ldots \\
x_{n-1}^{T}
\end{array}\right]
$$

- The PCA or Karhunen-Loeve Transform

$$
C u_{i}=\lambda_{i} u_{i}
$$

Efficient eigenspace computation

- $\mathrm{n} \ll \mathrm{m}$
- Computing the eigenvectors $u_{i}^{\prime} \mathrm{i}=0, \ldots, \mathrm{n}-1$ of the inner product matrix

$$
Q=X^{T} X=\left[\begin{array}{c}
x_{0}^{T} \\
x_{1}^{T} \\
\dddot{ } \\
x_{n-1}^{T}
\end{array}\right]\left[\begin{array}{llll}
x_{0} & x_{1} & \ldots & x_{n-1}
\end{array}\right] ; Q \in R^{n \times n}
$$

- The eigenvectors of $X X^{\top}$ can be obtained using $X X^{\top} X v_{i}^{\prime}=\lambda_{i}^{\prime} X v_{i}^{\prime}$:

$$
u_{i}=\frac{1}{\sqrt{\lambda_{i}^{\prime}}} X u_{i}^{\prime}
$$

Outline

(1) Introduction
2) Appearance based learning and recognition
(3) Appearance based method for visual object recognition

4 Principal Component Analysis
(5) Linear Discriminative Analysis
(6) Canonical Correlation Analysis
(7) Independent Component Analysis (ICA)
(8) Summary

Principal Component Analysis

Principal Component Analysis

PCA Image Representation

Properties of PCA

- Any point x_{i} can be projected to an appropriate point q_{i} by

$$
q_{i}=U^{T}\left(x_{i}-\mu\right)
$$

- and conversely

$$
U q_{i}+\mu=x_{i}
$$

Properties of PCA

- It can be shown the MSE between x_{i} and its reconstruction using m eigenvectors is given by

$$
\sum_{j=1}^{N} \lambda_{j}-\sum_{j=1}^{m} \lambda_{j}=\sum_{j=m+1}^{N} \lambda_{j}
$$

- PCA minimizes the reconstruction error
- PCA maximizes the variance of projection
- Find a "natural" coordinate system for the sample data

PCA for visual recognition and pose estimation

- Objects/images are represented as coordinates in an m-dimension space
- An example
- 3D space with points representing objects on a manifold of parametric eigenspace such as orientation, pose, illumination, ...

PCA for visual recognition and pose estimation

- Calculate coefficients
- Search for nearest point on manifold
- Point determines / interpolates object and/or pose

Coefficient calculation

- To recover a_{i} the image is projected into the eigenspace

$$
a_{i}(\mathbf{x})=<\mathbf{x}, \mathbf{e}_{i}>=\sum_{j=1}^{m} x_{j} e_{i_{j}} \quad 1 \leq i \leq p
$$

- Complete image x_{i} is required to calculate a_{i}
- Corresponds to a least square solution

Outline

(1) Introduction
2) Appearance based learning and recognition
(3) Appearance based method for visual object recognition

4 Principal Component Analysis
(5) Linear Discriminative Analysis
(6) Canonical Correlation Analysis
(7) Independent Component Analysis (ICA)
(8) Summary

Linear Discriminate Analysis

- PCA minimizes the projection error

PCA-Projection

- PCA is unsupervised - no class information is used
- Discriminating information may be used

Linear Discriminate Analysis

- For LDA would would like to
- Maximize distance between classes
- Minimize distance within classes
- Fisher linear discriminant

$$
\rho(W)=\frac{W^{T} S_{B} W}{W^{T} S_{W} W}
$$

LDA: Problem Formulation

- n sample images:

$$
\begin{array}{r}
\left\{x_{1}, \ldots, x_{n}\right\} \\
\left\{\chi_{1}, \ldots, \chi_{c}\right\} \\
\mu_{i}=\frac{1}{n_{i}} \sum_{x_{k} \in \chi_{i}} x_{k} \\
\mu=\frac{1}{n} \sum_{k=1}^{N} x_{k}
\end{array}
$$

- c classes:
- Average of each class:
- Total average:

LDA: Practice

- Scatter of class i:
- Within class scatter:
- Between class scatter:
- Total scatter:

$$
\begin{array}{r}
S_{i}=\sum_{x_{k} \in \chi_{i}}\left(x_{k}-\mu_{i}\right)\left(x_{k}-m u_{i}\right)^{T} \\
S_{W}=\sum_{i=1}^{c} S_{i} \\
S_{B}=\sum_{i=1}^{c}\left|\chi_{i}\right|\left(\mu_{i}-\mu\right)\left(\mu_{i}-\mu\right)^{T} \\
S_{T}=S_{W}+S_{B}
\end{array}
$$

LDA: Practice

- After projection: $y_{k}=W^{T} x_{k}$
- Between class scatter of y: $\tilde{S}_{B}=W^{\top} S_{B} W$
- Within class scatter of $\mathrm{y}: \tilde{S}_{W}=W^{\top} S_{W} W$

LDA Projection

Good separation

LDA characteristics

- Maximization of

$$
\rho(W)=\frac{W^{T} S_{B} W}{W^{T} S_{W} W}
$$

- given by solution of generalized eigenvalue problem

$$
S_{B} W=\lambda S_{W} W
$$

- The the c-class case we obtain c-1 projections as the largest eigenvalue of

$$
S_{B} W_{i}=\lambda S_{W} W_{i}
$$

- How does one calculate LDA for high-dimensional images?
- Problem: S_{W} is always singular
- Number of pixels in an image is larger than number of images in training set
- Fisherfaces example: reduce dimensionality by doing a PCA first and then LDA
- Simultaneous diagonalization of S_{W} and S_{B}

Ficherfaces

- First published by Belhumeur et al 1997
- Reduce dimensionality to n-c with PCA

$$
U_{P C A}=\arg \max _{U}\left|U^{\top} Q U\right|=\left[\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n-c}
\end{array}\right]
$$

- Further reduce to c-1 with LDA

$$
W_{L D A}=\arg \max _{w} \frac{\left|W^{T} W_{p c a}^{T} S_{B} W_{p c a} W\right|}{\left|W^{T} W_{p c a}^{T} S_{W} W_{p c a} W\right|}=\left[\begin{array}{llll}
w_{1} & w_{2} & \ldots & w_{c-1}
\end{array}\right]
$$

- The optimal projection is then

$$
W_{o p t}=W_{L D A}^{T} U^{T}
$$

Example Fisherface

- Example Fisherface of recognition face w/wo glasses (Belhumeur et al, 1997)

Fisher example performance

- Small comparison of face recognition (old data)

- Significantly better performance than PCA for face recognition
- Noise sensitive
- Standard large scale Kaggle competitions today score 97\%

Outline

(1) Introduction
2) Appearance based learning and recognition
(3) Appearance based method for visual object recognition

4 Principal Component Analysis
(5) Linear Discriminative Analysis
(6) Canonical Correlation Analysis
(7) Independent Component Analysis (ICA)
(8) Summary

Canonical Correlation Analysis (CCA)

- Also supervised method by motivated by regression / interpolation tasks such as pose estimation
- CCA related two sets of observations by determining pairs of directions that yield maximum correlation between the data sets
- Find a pair of directions (canonical factors): $w_{x} \in R^{P}$ and $w_{y} \in R^{q}$ so that the correlation of the projections $c=w_{x}^{T} x$ and $d=w_{y}^{T} y$ become maximal

CCA - the details

$$
\begin{gathered}
\rho=\frac{E[c d]}{\sqrt{E\left[c^{2}\right] E\left[d^{2}\right]}}= \\
\frac{E\left[w_{x}^{T} x y^{t} w_{y}\right]}{\sqrt{E\left[w_{x}^{T} x x^{T} w_{x}\right] E\left[w_{y}^{T} y y^{t} w_{y}\right]}}= \\
\frac{w_{x}^{T} C_{x y} w_{y}}{\sqrt{w_{x}^{T} C_{x x} w_{x} w_{y}^{T} C_{y y} w_{y}}}
\end{gathered}
$$

CCA - computations

- Finding solutions

$$
w=\left[\begin{array}{l}
w_{x} \\
w_{y}
\end{array}\right] \quad A=\left[\begin{array}{cc}
0 & C_{x y} \\
C_{y x} & 0
\end{array}\right] \quad B=\left[\begin{array}{cc}
C_{x x} & 0 \\
0 & C_{y y}
\end{array}\right]
$$

- Compute the Rayleigh Quotient

$$
r=\frac{w^{\top} A w}{w^{\top} B w}
$$

- Think of it as a generalized eigenvalue problem

$$
A w=\mu B w
$$

CCA for images

- Same challenge as for LDA
- Computational analysis based on SVD

$$
\begin{array}{r}
A=C_{x x}^{-\frac{1}{2}} C_{x y} C_{y y}^{-\frac{1}{2}} \\
A=U D V^{T} \\
w_{x i}=C_{x x}^{-\frac{1}{2}} u_{i} \\
w_{y i}=C_{y y}^{-\frac{1}{2}} v_{i}
\end{array}
$$

Properties of CCA

- At most $\min (p, q, n)$ CCA factors
- Invariant wrt to affine transformations
- Orthogonality of the canonical factors

$$
\begin{aligned}
& w_{x i}^{T} C_{x x} w_{x j}=0 \\
& w_{y i}^{T} C_{y y} w_{y j}=0 \\
& w_{x i}^{T} C_{x y} w_{y j}=0
\end{aligned}
$$

CCA Example

- Parametric eigenspace obtained by PCA for 2 DOF pose space

Outline

(1) Introduction

2 Appearance based learning and recognition
(3) Appearance based method for visual object recognition
4. Principal Component Analysis
(5) Linear Discriminative Analysis
(6) Canonical Correlation Analysis
(7) Independent Component Analysis (ICA)
(8) Summary

Independent Component Analysis (ICA)

- ICA is a powerful technique from signal processing (blind source separation)
- Can we seen as an extension of PCA
- PCA takes statistics up to 2 nd order into account
- ICA estimate components that are statistically independent
- Generates sparse/local descriptors - sparse coding

Independent Component Analysis (ICA)

- m scalar variables - $X=\left(x_{1}, \ldots x_{m}\right)^{T}$
- Assumed to be a linear mixture of n sources $-S=\left(s_{1}, \ldots s_{n}\right)^{T}$

$$
X=A S
$$

- Objective: Given X find estimates for A and S under the assumption S are independent

ICA Example

Original Sources

Mixtures

Recovered Sources

ICA Example

ICA basis obtained from 16×16 patches of natural images (Bell\&Sejnowski 96)

ICA Algorithms

- Minimize a complex tensor function
- Adaptive algorithms based on stochastic gradient
- Measure independence
- Computer A recursively to maximize independence
- ICA only works for non-Gaussian sources
- Often whitening of data is performance
- ICA does not provide ordering
- ICA components are not orthogonal

ICA noise suppression example

Example from Hyvärinen, 1999

PCA vs ICA for face recognition

PCA

ICA
From Baek et al, 2002

Outline

(1) Introduction
2) Appearance based learning and recognition

3 Appearance based method for visual object recognition
4 Principal Component Analysis
(5) Linear Discriminative Analysis

6 Canonical Correlation Analysis
(7) Independent Component Analysis (ICA)
(8) Summary

Summary

- Brief overview of use of sub-space methods for data processing
- The exact task should dictate the choice of methods
- Other cascaded processing simplifies complexity
- Good standard tools available in most signal processing toolboxes

Questions

Questions

