CSE276C - Mathematics for Robotics

Henrik I. Christensen

Computer Science and Engineering
University of California, San Diego
http://cri.ucsd.edu

September 2023

Introduction

- Lecturer
- Structure
- Materials
- Information Sources
- Transformations
- Professor at UCSD
- Director of Robotics
- "Real Systems for Real Problems"
- Multi-Robot coordination
- Autonomous Driving Vehicles
- First commercial robot vacuum cleaner
- Working with Amazon, Boeing, Nissan, Qualcomm, Robust.AI, ...

Teaching Assistants

- Andi Frank, PhD student CSE - Affordance based robotics
- Office hours to be fully finalized

Structure of course

- Lectures
- Homework
- Discussions

Structure of course

- Linear Systems
- Subspace Methods
- Optimization
- Root Finding
- Integration
- Differential Geometry
- Space \& Search
- Slides available by lecture time (PDF)
- Lectures (audio) recorded and available within 24 hours on Canvas
- Any and all feedback on format, . . is most welcome

Objectives

- Basic tools for study of robotics
- Core mathematical concepts
- A few example applications
- What are key tools for perception, planning, and basic control

Textbooks

- W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. "Numerical Recipes". Cambridge University Press. (Any edition.)
- T. Bewley, Numerical Renaissance: simulation, optimization, \& control
- M. Deisenroth, A. Aldo Faisal, and C. Soon Ong, "Mathematics for Machine Learning", Cambridge University Press, 2019

Information Sources

- CANVAS website
- WebSite - http://www.hichristensen.com/CSE276C-23
- Slides
- Lecture notes (handwritten sorry!)
- Piazza - Did you all get an invite?
- Office Hours - Henrik \& TA/Andi
- Audio/podcast recordings available from CANVAS site
- 5 Homework assignments \approx two weeks
- Some basic math - analysis by manual or automated
- Math problems in robotics (could be Python/Numpy or MatLab)
- Analysis of sample robotics data

QUESTIONS?

Use of Math in Robotics?

Use of Math in Robotics?

Space and Rotations

- How do you represent the position of a robot in space?

Space and Rotations

- How do you represent the position of a robot in space?

$$
{ }^{j} p_{i}=\left(\begin{array}{c}
{ }^{j} p_{x_{i}} \\
{ }^{j} p_{y_{i}} \\
{ }^{j} p_{z_{i}}
\end{array}\right)
$$

- The position of i with respect to j
- examples
- World reference frame
- Position of the robot
- Sensor position or a sensor point

Example Reference Frames

Rotation between two reference frames - i, j

$$
{ }^{j} \mathbf{R}_{i}=\left(\begin{array}{ccc}
\vec{x}_{i} \vec{x}_{j} & \vec{y}_{i} \vec{x}_{j} & \vec{z}_{i} \vec{x}_{j} \\
\vec{x}_{i} \vec{y}_{j} & \vec{y}_{i} \vec{y}_{j} & \vec{z}_{i} \vec{y}_{j} \\
\vec{x}_{i} \vec{z}_{j} & \vec{y}_{i} \vec{z}_{j} & \vec{z}_{i} \vec{z}_{j}
\end{array}\right)
$$

where $\left(\vec{x}_{i}, \overrightarrow{y_{i}}, \overrightarrow{z_{i}}\right)$ and $\left(\vec{x}_{j}, \vec{y}_{j}, \vec{z}_{j}\right)$ are
basis vectors for the two coordinate frames

Elementary Rotations

- Rotation around Z-axis

$$
R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Elementary Rotations

- Rotation around Z-axis

$$
R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- the same for Y and X

$$
\begin{aligned}
& R_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \\
& R_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
\end{aligned}
$$

Considerations for rotations

- We can do combinations

$$
{ }^{k} \mathbf{R}_{i}={ }^{k} \mathbf{R}_{j}{ }^{j} \mathbf{R}_{i}
$$

Considerations for rotations

- We can do combinations

$$
{ }^{k} \mathbf{R}_{i}={ }^{k} \mathbf{R}_{j}{ }^{j} \mathbf{R}_{i}
$$

- Note the order is important

$$
{ }^{k} \mathbf{R}_{j}{ }^{j} \mathbf{R}_{i} \neq{ }^{j} \mathbf{R}_{i}{ }^{k} \mathbf{R}_{j}
$$

- The order and reference frames are very important

Euler Angles

- We frequently use Euler angles in robotics

Euler Angles

- The convention used is $R_{z} R_{y} R_{x}$ with respect to $(\alpha, \beta, \gamma)^{T}$

$$
{ }^{j} \mathbf{R}_{i}=\left(\begin{array}{ccc}
c_{\alpha} c_{\beta} & c_{\alpha} s_{\beta} s_{\gamma}-s_{\alpha} c_{\gamma} & c_{\alpha} s_{\beta} c_{\gamma}+s_{\alpha} s_{\gamma} \\
s_{\alpha} c_{\beta} & s_{\alpha} s_{\beta} s_{\gamma}+c_{\alpha} c_{\gamma} & s_{\alpha} s_{\beta} c_{\gamma}-c_{\alpha} s_{\gamma} \\
-s_{\beta} & c_{\beta} s_{\gamma} & c_{\beta} c_{\gamma}
\end{array}\right)
$$

Derivation of Euler angles

- If we have the rotation matrix

$$
{ }^{j} \mathbf{R}_{i}=\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{23} & r_{33}
\end{array}\right)
$$

- derivation of the Euler Angles

$$
\begin{aligned}
& \beta=\operatorname{atan} 2 \frac{-r_{31}}{\sqrt{r_{11}^{2}+r_{21}^{2}}} \\
& \alpha=\operatorname{atan} 2 \frac{r_{21} / \cos \beta}{r_{11} / \cos \beta} \\
& \gamma=\operatorname{atan} 2 \frac{r_{32} / \cos \beta}{r_{33} / \cos \beta}
\end{aligned}
$$

When may we have problems?

- Could we have problems? / When?

When may we have problems?

- Could we have problems? / When?
- What about singularities?

QUESTIONS?

Quaternions

- Could we generate a representation that has no singularities?
- Hamilton, 1843.
- A 3-parameter family is not adequate (proved by now)
- A 4-parameter model is a possibility
- Quaternions is a possible representation (not the most intuitive)

Quaternions

- Imagine 3-D imaginary numbers - three basis vectors - $\vec{i}, \vec{j}, \vec{k}$
- We can represent a quaternion as

$$
\vec{\epsilon}=\epsilon_{0}+\epsilon_{1} \vec{i}+\epsilon_{2} \vec{j}+\epsilon_{3} \vec{k}
$$

or $\left(\epsilon_{0}, \vec{\epsilon}\right)$

Quaternions

- Imagine 3-D imaginary numbers - three basis vectors - $\vec{i}, \vec{j}, \vec{k}$
- We can represent a quaternion as

$$
\vec{\epsilon}=\epsilon_{0}+\epsilon_{1} \vec{i}+\epsilon_{2} \vec{j}+\epsilon_{3} \vec{k}
$$

or $\left(\epsilon_{0}, \vec{\epsilon}\right)$

- we have three basis vectors

$$
\overrightarrow{i j}=\vec{j} \vec{j}=\vec{k} \vec{k}=-1
$$

- mixed products

$$
\begin{gathered}
\overrightarrow{i j}=\vec{k}, \overrightarrow{j k}=\vec{i}, \vec{k} \vec{i}=\vec{j} \\
\overrightarrow{j i}=-\vec{k}, \vec{k} \vec{j}=-\vec{i}, \overrightarrow{i k}=-\vec{j}
\end{gathered}
$$

- Null quaternion

$$
\overrightarrow{0}=0+0 \vec{i}+0 \vec{j}+0 \vec{k}
$$

- Unit quarternion

$$
\overrightarrow{1}=1+0 \vec{i}+0 \vec{j}+0 \vec{k}
$$

Quaternion operations

- Product of two quaternions

$$
\begin{aligned}
\vec{a} \vec{b} & =a_{0} b_{0}-a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3} \\
& +\left(a_{0} b_{1}+a_{1} b_{0}+a_{2} b_{3}-a_{3} b_{2}\right) \vec{i} \\
& +\left(a_{0} b_{2}+a_{2} b_{0}+a_{3} b_{1}-a_{1} b_{3}\right) \vec{j} \\
& +\left(a_{0} b_{3}+a_{3} b_{0}+a_{1} b_{2}-a_{2} b_{1}\right) \vec{k}
\end{aligned}
$$

- The good news there are standard libraries

Rotations w. Quaternions

- Rotating at an angle θ around the vector \vec{a} expressed as a quaternion:

$$
\vec{\epsilon}=\cos \frac{\theta}{2}+a_{x} \sin \frac{\theta}{2} \vec{i}+a_{y} \sin \frac{\theta}{2} \vec{j}+a_{z} \sin \frac{\theta}{2} \vec{k}
$$

- or

$$
\vec{\epsilon}=\left(\cos \frac{\theta}{2}, \vec{a} \sin \frac{\theta}{2}\right)
$$

Mapping quaternions to rotation matrices

- The rotation of a quaternion $\vec{\epsilon}$ can be written as

$$
{ }^{j} \mathbf{R}_{i}=\left(\begin{array}{ccc}
1-2\left(\epsilon_{2}^{2}+\epsilon_{3}^{2}\right) & 2\left(\epsilon_{1} \epsilon_{2}-\epsilon_{0} \epsilon_{3}\right) & 2\left(\epsilon_{1} \epsilon_{3}+\epsilon_{0} \epsilon_{2}\right) \\
2\left(\epsilon_{1} \epsilon_{2}+\epsilon_{0} \epsilon_{3}\right) & 1-2\left(\epsilon_{1}^{2}+\epsilon_{3}^{2}\right) & 2\left(\epsilon_{2} \epsilon_{3}-\epsilon_{0} \epsilon_{1}\right) \\
2\left(\epsilon_{1} \epsilon_{3}-\epsilon_{0} \epsilon_{2}\right) & 2\left(\epsilon_{2} \epsilon_{3}+\epsilon_{0} \epsilon_{1}\right) & 1-2\left(\epsilon_{1}^{2}+\epsilon_{2}^{2}\right)
\end{array}\right)
$$

- As I said the good news there are standard libraries

From a rotation matrix to quaternions

- Direct computing the quaternions from a rotation matrix (\mathbf{R})

$$
\begin{array}{cc}
\epsilon_{0} & = \\
\frac{1}{2} \sqrt{1+r_{11}+r_{22}+r_{33}} \\
\epsilon_{1} & = \\
\frac{r_{32}-r_{33}}{4 \epsilon_{0}} \\
\epsilon_{2} & = \\
\frac{r_{13}-r_{31}}{4 \epsilon_{0}} \\
\epsilon_{3} & = \\
\frac{r_{1}-r_{12}}{4 \epsilon_{0}}
\end{array}
$$

- Quaternions frequently used in graphics, computer vision and robotics

QUESTIONS?

Coordinate transformations

- To move between transformation or move an object we frequently encounter

- We can write this as ${ }^{j} \vec{p}={ }^{j} \mathbf{R}_{i}{ }^{i} \vec{p}+\vec{t}$

Homogeneous Transformations

- We can do this more easily with homogeneous coordinates

$$
\vec{P}=\binom{\vec{p}}{1}
$$

- given this our transformation can now be written as

$$
\binom{{ }^{j} p}{1}=\left(\begin{array}{cc}
{ }^{j} \mathbf{R}_{i} & t \\
0 & 1
\end{array}\right)\binom{{ }^{i} p}{1}
$$

- or ${ }^{j} P={ }^{j} T_{i}{ }^{i} P$

Standard Joints

- Revolute joint

$$
{ }^{j} \mathbf{R}_{i}=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Prismatic joint

$$
T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ll}
& 0 \\
1 & 0 \\
& d \\
0 & 1
\end{array}\right)
$$

Standard Joints (cont.)

- Cylindrical

$$
T=\left(\begin{array}{cc}
& 0 \\
R_{\theta} & 0 \\
& d \\
0 & 1
\end{array}\right)
$$

- Spherical

$$
T=\left(\begin{array}{cc}
R_{\alpha, \beta, \gamma} & 0 \\
0 & 1
\end{array}\right)
$$

- Most other joints can be constructed from these basic models

Example Robot KUKA KR15

Robot dynamics

- This is an entire field of its own.
- How can we computer the velocity of a robot?
- If we know a desired velocity, how fast should we turn the wheels?
- In general we will refer to the robot actuators as q_{i}
- Forward kinematics

$$
v=\Phi \dot{q}
$$

- Inverse kinematics

$$
\dot{q}=\Phi^{-1} v
$$

- Not get into the much of the details until we talk about differential geometry (end of course)

Wrap-up

- Basic course information
- Books, topics, websites, ...
- Introduction to positions, rotations, transformations, ...
- Next time we will talk about linear systems of equations

Questions

Questions

